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Much current research on speeded choice utilizes models in which the response is triggered by a
stochastic process crossing a deterministic threshold. This article focuses on 2 such model classes,
1 based on continuous-time diffusion and the other on linear ballistic accumulation (LBA). Both
models assume random variability in growth rates and in other model components across trials. We
show that if the form of this variability is unconstrained, the models can exactly match any possible
pattern of response probabilities and response time distributions. Thus, the explanatory or predictive
content of these models is determined not by their structural assumptions but, rather, by distribu-
tional assumptions (e.g., Gaussian distributions) that are traditionally regarded as implementation
details. Selective influence assumptions (i.e., which experimental manipulations affect which model
parameters) are shown to have no restrictive effect, except for the theoretically questionable
assumption that speed–accuracy instructions do not affect growth rates. The 2nd contribution of this
article concerns translation of falsifiable models between universal modeling languages. Specifi-
cally, we translate the predictions of the diffusion and LBA models (with their parametric and
selective influence assumptions intact) into the Grice modeling framework, in which accumulation
processes are deterministic and thresholds are random variables. The Grice framework is also known
to reproduce any possible pattern of response probabilities and times, and hence it can be used as
a common language for comparing models. It is found that only a few simple properties of empirical
data are necessary predictions of the diffusion and LBA models.
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A number of theoretical frameworks have been developed for
modeling choice reaction time (RT) in terms of certain psychological
processes developing until they reach threshold levels, or boundaries.
Such processes may be thought of as evidence accumulation or
response readiness, but we use the neutral term response processes. In
most contemporary models, the response processes are stochastic, and
the decision thresholds are fixed under given observation conditions.
In this article we focus on two classes of such models: the linear
ballistic accumulator (LBA; Brown & Heathcote, 2008) and the class
of diffusion models, which includes the Wiener diffusion model
(Ratcliff, 1978) and the Ornstein-Uhlenbeck (OU) model (Busemeyer
& Townsend, 1993).

As an alternative, Grice (1968, 1972; Grice, Cahnam, &
Boroughs, 1984; Grice, Nullmeyer, & Spiker, 1982) proposed a
class of models in which the response processes are determin-
istic, and the thresholds are stochastically sampled for each
trial. Grice’s formulation involved specific assumptions about
the shape of the response processes (linear or negatively accel-
erated exponential) and the distributions of the thresholds (in-
dependent normal). These assumptions are clearly of a “tech-
nical” nature rather than part of Grice’s “main idea”—they are
introduced to fit empirical data and are supposed to be freely
modifiable if needed. Thus, the linear response processes pos-
ited in Grice (1968) were replaced with the negatively acceler-
ated exponential ones in Grice’s later publications, and this was
not presented as changing the essence of the model. Dzhafarov
(1993) showed, however, that with these technical assumptions
removed, the Grice framework can match any pattern of re-
sponse probabilities and RTs, across any set of stimuli and other
experimental conditions (this result is recapitulated below as
Theorem 1). This mathematical result means that the Grice
architecture (deterministic response processes racing to proba-
bilistically chosen thresholds) is not a falsifiable model but
rather a universal modeling language. Its only testable aspects
are the “technical” constraints that may be imposed on its
constituents.
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The distinction between universal theoretical languages and
empirically falsifiable models formulated in these languages is the
leitmotif of this article. A comparison of competing models is
often thought of as a contrast of their main ideas. This is incorrect,
however, if the competing main ideas can be shown to be univer-
sally applicable theoretical languages.1 In that case they are equiv-
alent, and one can always translate a model formulated in one
language into the other. The contrast in such a case occurs between
the technical assumptions of the models only, such as the common
assumption of normality in the distribution of growth rates of each
response process.

To clarify this argument by a simple analogy, any RT distribu-
tion can be represented by a cumulative distribution function
F(t) � Pr[RT � t], log survival function S(t) � �log Pr[RT � t],
odds ratio function H(t) � Pr[RT � t]/Pr[RT � t], etc. Under the
commonly accepted assumption of differentiability, one can add to
this list density functions f(t) � dF(t)/dt, hazard functions h(t) �
f(t)/(1 � F(t)), reverse hazards s(t) � f(t)/F(t), etc. Due to the
simplicity and familiarity of these representations, their universal-
ity and their mutual equivalence are obvious. Using one represen-
tation over another is merely a matter of convenience. However, if
one makes a simplifying assumption within one of these represen-
tations, for example that F(t) is a linear function on some interval
a � t � b, and someone else makes the simplifying assumption
that S(t) is a linear function on the same interval, then the two
descriptions become falsifiable models, one of which may very
well be more correct than the other.

This simple analogy also illustrates that nonfalsifiability need
not mean deficiency or “emptiness” of one’s construction. A
modeling language might be universal but nevertheless valuable in
enabling formulation of falsifiable models that otherwise could not
be stated. Using our analogy, one cannot make the falsifiable
statement that F(t) is linear on some interval without first intro-
ducing the universally applicable notion of a cumulative distribu-
tion function. Problems only arise when one does not distinguish
a descriptive language from a model formulated in that language.
In some fields of psychology this distinction may not be easy to
achieve, but in areas amenable to rigorous mathematical formula-
tions (such as the models of RT analyzed in this article) it is
relatively straightforward.

The present article pursues two goals. First, we prove that both
the LBA and diffusion models, when stripped of their “technical”
assumptions, are nonfalsifiable modeling languages, on a par with
the Grice modeling framework (see the Universality of Models of
Speeded Choice section). Specifically, both the LBA and diffusion
models assume random trial-by-trial variability in the growth rates
and starting points of their response processes, following Gaussian
and uniform distributions, respectively. These distributions were
chosen for mathematical convenience rather than theoretical rea-
sons. The models also assume the growth-rate distribution is
invariant with respect to certain experimental manipulations, al-
though we argue that this assumption is poorly motivated (see the
Selective Influence section). The primary results of this article are
proofs that, if the constraints on the distributions of growth rates
are removed, the diffusion and LBA models become universal:
Any pattern of response probabilities and RT distributions, across
any set of stimuli and experimental conditions, can be fit exactly.
In certain nonlinear ballistic accumulator models (including that of
Brown & Heathcote, 2005, except for one additional technical

detail), universality can also arise from start-point variability, if
that distribution is unconstrained. These unfalsifiability results for
the generalized models, with distributional constraints removed,
imply that the predictive content of the standard models is fully
determined by their assumptions about these distributions. This
conclusion does not apply to stochastic accumulation models that
exclude between-trial variability in growth rates or starting points
(e.g., Link & Heath, 1975; Palmer, Huk, & Shadlen, 2005), but it
has significant implications for models that do.

Our second goal is to develop methods for translating falsifiable
models between universal modeling languages. When two lan-
guages are universal, any constrained model (e.g., defined by
parametric restrictions on one or more of its components) ex-
pressed in one language can be reexpressed as an equivalent model
in the other language. Here we translate the diffusion and LBA
models (with all their technical assumptions included) into the
Grice modeling language, by deriving Grice models that make the
same predictions (see the Translating the LBA and Diffusion
Models Into the Grice Framework section). The specific goal is to
determine the role that the technical assumptions of the LBA and
diffusion models play in explaining empirical data, and to develop
an understanding of the predictive constraints these assumptions
impose that is not tied to one modeling framework. The free
parameters of the original models are systematically varied to
investigate how they affect the course of the Grice response
processes. Grice representations are then derived for the diffusion
and LBA models with their parameters fit to empirical data, as well
as for the empirical data themselves (taken from Ratcliff, Thapar,
& McKoon, 2001), to understand what aspects of the data the
models capture, and how. These analyses demonstrate that trans-
lating technical assumptions (i.e., specific models) between differ-
ent modeling languages can provide greater insight into their
logical content, as well as into the patterns of behavior those
assumptions can explain.

In addition to their parametric distributional assumptions, the
LBA and diffusion models make two selective influence assump-
tions about how model parameters can depend on different aspects
of stimulus and observation conditions. First, it is assumed that
variation of stimulus difficulty (e.g., perceptual discriminability or
lexical frequency) affects only the growth rates of the response
processes and not other parameters, such as threshold values and
starting points. Second, it is assumed that manipulations of speed–
accuracy instructions, usually held constant across a block of trials,
affect only the threshold parameter (and start-point variability in
the LBA). We consider the implications of these assumptions in
the Selective Influence section. The first selective influence as-
sumption has no impact on our universality results (i.e., the models
are still unfalsifiable with this assumption), whereas the second
assumption introduces predictive constraints and hence makes the
models falsifiable. However, whereas the justification commonly
offered for the first selective influence assumption is logically
compelling, we argue that the justification for the second is not.

1 RT distributions are usually assumed to satisfy some regularity con-
ditions, such as being representable by probability density functions, and
the universality of a theoretical language may be confined to such regu-
larity conditions. This should not prevent one from calling the language
“universal” insofar as the regularity conditions in question are considered
firmly established.
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We also consider the implications of selective influence for mutual
translatability between modeling languages and demonstrate that
the notion of selective influence per se cannot be used to distin-
guish between equivalent languages. This follows from the fact
that when a model is translated from one modeling language into
another, the precise parameterization of the original model can be
carried over to the new language, with all assumptions of selective
influences included. The selective influence assumptions therefore
are never “lost in translation,” even though the parameters in
question may change their interpretations.

To prevent misunderstanding, we are not proposing to replace
the different modeling languages investigated in this article with
just one of them (say, the Grice framework). Universality and
mutual equivalence still allow for one theoretical description to be
more convenient or more transparent than another. Returning to
our simple analogy, some properties of RTs may be more apparent
when represented by hazard functions than by distribution func-
tions (Luce, 1986). Despite the equivalence among the diffusion,
LBA, and Grice modeling languages, as well as the variety of
modifications and simplifications of these languages readily sug-
gesting themselves, it is possible that one of these is more conve-
nient than others in a specific context or in view of a specific goal.
For example, the LBA and Grice frameworks assume a separate
process for each response, with a response triggered once its
process reaches an absolute threshold. This stopping rule is equally
simple regardless of the number of response options. In contrast,
the diffusion model uses a relative stopping rule that admits a
simpler formulation for the case of two responses (a single process
representing the difference between the responses, with two con-
stant thresholds) but that becomes more complex in many-
alternative tasks (Bogacz & Gurney, 2007; Draglia, Tartakovsky,
& Veeravalli, 1999; Roe, Busemeyer, & Townsend, 2001). As we
elaborate in the Discussion section, consideration of neurophysi-
ological or other process-level data, in addition to behavior, may
also lead to advantages of one framework over another, although
incorporation of such data requires additional assumptions about
how abstract model components map onto physical variables.
Convenience in a model (mathematical simplicity, ease of map-
ping special terms into colloquial or traditional ones) is a legiti-
mate consideration provided one does not confuse it with truth
about the system being modeled.

Universality of Models of Speeded Choice

This article focuses on speeded choice tasks, in which on each
trial the subject selects one of n response options. We index
variation in stimulus values by s, and variation in other experi-
mental factors, such as speed versus accuracy instructions, by c,
generically referring to values of c as (experimental, or observa-
tion) conditions. In the paradigms we consider, s always varies
from trial to trial, whereas c is constant across a block of trials.
Because of this we also refer to s and c as trial-level and block-
level manipulations, leaving open the question of whether it is the
blocking scheme or the nature of each experimental factor that
determines which theoretical parameters it influences. For each
choice of s and c, the subject’s behavior can be summarized by a
joint distribution over the chosen response, r, and the response
time, t. Formally, this (joint) response-and-time (R&T) distribu-
tion can be defined as

Gs,c�r, t� � Pr�response � r and RT � t�s, c�. (1)

The marginal distributions for the joint R&T distribution deter-
mine the response probabilities

Gs,c�r, ·� � Pr[response � r|s, c] � lim
t¡�

Gs,c�r, t� (2)

and the overall RT distribution

Gs,c�·, t� � Pr[RT � t|s, c] � �
r�1

n

Gs,c�r, t�. (3)

In the following, we tacitly assume that the domain of t is (0,�),
that is, all finite nonnegative real numbers. The analysis can be
easily extended to include negative values for t (i.e., premature
responses), but we need not do this as premature responses are
rarely observed in the choice RT paradigm.

With little loss of generality, we assume that Gs,c(r,t) is differ-
entiable in t, which allows us to define the (joint) R&T density
function,

gs,c�r, t� �
dGs,c�r, t�

dt
.

(4)

Under this assumption, we can also define the joint hazard func-
tion for R&T as the probability density of response r occurring at
time t, conditioned on no response having occurred before t (Mar-
ley & Colonius, 1992; Townsend, 1976):

hs,c�r, t� � �
gs,c�r, t�

1 � Gs,c�·, t�
if t � tmax

s,c

0 if t � tmax
s,c , (5)

where tmax
s,c is the maximal RT:

tmax
s,c � min�t : Gs,c�·, t� � 1�, (6)

which is understood to be � if Gs,c(·,t) � 1 for all t.
With reference to the example in the Introduction, the R&T

distribution, R&T density function, and joint hazard function are
all equivalent representations of the same information. It will be
useful in what follows to switch freely among these alternate
representations.

The Grice Framework and Independent
Race Models

Consider now the general class of race models, in which each
response r is associated with a process Rr

s,c(t), generally a random
process, and a threshold �r

s,c 	 Rr
s,c�0�, generally a random variable.

As indicated by the superscripts, both the processes and the thresh-
olds may in general depend on the stimulus (s) and experimental
condition (c). On each trial, the processes race to their respective
thresholds. The first process to reach its threshold determines
which response is emitted, and the time taken to reach that thresh-
old equals the RT.

For each response r, define the first-passage time, Tr
s,c, as the

time it would take Rr
s,c(t) to cross �r

s,c for the first time, ignoring the
other process-threshold pairs:

Tr
s,c � min�t : Rr

s,c�t� � �r
s,c�. (7)
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Then the response observed in a given trial, r, is given by

r � arg min
i

�Ti
s,c : i � 1, . . . , n�,

(8)

where arg min with index i indicates the value of i (here, one of the
n responses) for which the first-passage time Ti

s,c is shortest. The
corresponding RT is given by

RT � min�Ti
s,c : i � 1, . . . , n� � Tr

s,c. (9)

This representation is useful for modeling response choice and RT
in a way that avoids commitments to the nature of the underlying
processes (e.g., Townsend & Altieri, 2012; Townsend, Houpt, &
Silbert, 2012).

Any vector of process-threshold pairs

M � ��R1
s,c�t�, �1

s,c�, . . . , �Rn
s,c�t�, �n

s,c��
thus defines a race model. Equations 8 and 9 determine the R&T
distribution predicted by M for each stimulus and experimental
condition. If this joint distribution is equal to Gs,c, then we say that
M is a race representation for Gs,c. If the crossing times
T1

s,c, . . . , Tn
s,c are mutually independent for each stimulus and

condition, then we refer to M as an independent race model, and
we say that M is an independent race representation for Gs,c.

The Grice framework (Grice, 1968, 1972) is a class of race
models in which the response processes are all deterministic,
and the distribution of thresholds is independent of stimulus and
condition. The thresholds �1, . . . , �n are sampled from this
fixed joint distribution before each trial, and the stimulus (with
onset at t � 0) evokes n deterministic processes racing to their
respective thresholds (see Figure 1A). This class of models is
seemingly quite simple: given a distribution for the thresholds,
the only flexibility is in the choice of the (deterministic) re-
sponse process for each response and experimental condition.
Nevertheless, it is shown in Dzhafarov (1993) that the Grice
framework is universal, meaning that a Grice representation can
be constructed for any family of R&T distributions Gs,c(r,t).
Furthermore, the joint distribution defining the thresholds can
be chosen arbitrarily (except for a mild technical constraint
given below). This result is formalized as follows (see Dzha-
farov, 1993, for proof).

Theorem 1. (Universality of Grice framework; Dzhafarov,
1993). Let (�1, . . . , �n) be a vector of random thresholds, with any
joint distribution possessing a nonzero density everywhere on its
domain (inf �1, sup �1) � . . . � (inf �n, sup �n).2 Then for any
family of R&T distributions Gs,c(r,t), there exist deterministic
response processes Rr

s,c, such that

��R1
s,c�t�, �1�, . . . , �Rn

s,c�t�, �n��
is a race representation for Gs,c(r,t).

In other words, if no restrictions are placed on the response
processes (e.g., requiring them to come from some parametric
family), then the Grice framework is a universally applicable
modeling language rather than an empirically falsifiable model.
Moreover, because the threshold distribution is arbitrary, one can
fix this distribution in advance and still have a universal modeling
language.

If the thresholds are chosen to be mutually independent (making
the Grice model an independent race model), then the Grice

representation given by Theorem 1 can be analytically derived, as
shown in Theorem 2.

Theorem 2. (Grice framework with independent thresholds;
Dzhafarov, 1993). Let �1, . . . , �n in Theorem 1 be mutually
independent, and let hs,c(r,t) be the joint hazard function associ-
ated with Gs,c(r,t). Then the response processes in the Grice
representation of Gs,c(r,t) are given by

Rr
s,c�t� � 
r

�1�Pr�Tr
s,c � t��, (10)

for all t � tmax
s,c , where �r is the (strictly increasing) cumulative

distribution function for �r, and Tr
s,c is the model’s first-passage

time, with distribution function satisfying

Pr�Tr
s,c � t� � 1 � exp��	0

t
hs,c�r, ��d�� (11)

for all t � tmax
s,c .

Equation 11 is significant because it turns out to be a necessary
and sufficient condition for any independent race representation
(not just independent-threshold Grice representations), as stated in
Theorem 3.

Theorem 3. (Universality of independent race models). Let
Gs,c(r,t) be a family of R&T distributions, with associated joint
hazard functions hs,c(r,t). Let

M � ��R1
s,c�t�, �1�, . . . , �Rn

s,c�t�, �n��
be an independent race model, with first-passage times
�T1

s,c, . . . , Tn
s,c�. Then M is an independent race representation for

Gs,c if and only if Equation 11 holds for t � tmax
s,c .

If one disregards minor technical details and logical subtleties in
formulation, this theorem was proved by Marley and Colonius
(1992) and, in a different context, by Townsend (1976). For
completeness (and due to the details and subtleties just mentioned),
we provide a proof in Appendix A. The proof hinges on the fact
that in any independent race model representing Gs,c, the joint
hazard function hs,c(r,t) coincides with the individual hazard func-
tions 	r

s,c(t) for the first-passage times Tr
s,c:

hs,c�r, t� � �r
s,c�t�. (12)

Theorem 3 implies that the class of independent race models is
not a falsifiable model but a universal modeling language. As long
as one can define for each response a process-threshold pair with
the right distribution of first-passage times, any R&T distribution
can be perfectly fit. Thus the requirement of independent first-
passage times, taken alone, imparts no restriction on model pre-
dictions. Although there are models of speeded choice in which the
first-passage times are nonindependent (because of interactions
among the processes, as in Usher & McClelland, 2001, or mutual
interdependence of thresholds, as in Dzhafarov, 1993), the ques-
tion can never be empirically decided, at least from RT and choice
data alone. Furthermore, any model class within the family of
independent race models only has predictive power insofar as the
individual processes are restricted in their first-passage distribu-

2 This condition is unnecessarily strong, but sufficiently innocuous for
present purposes. In Dzhafarov (1993) the theorem is proved under weaker
constraints. Given a random variable x (here, one of �i), inf x and sup x
denote the lower and upper boundaries for the set of this variable’s values,
these boundaries not being necessarily included in this set.
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tions. This conclusion is used below to prove universality of the
LBA when its growth-rate distributions are unconstrained (see the
Universality of the Linear Ballistic Accumulator section).

As stated in Marley and Colonius (1992), an important caveat to
representing Gs,c(r,t) through the competing random times
T1

s,c, . . . , Tn
s,c is that Equation 11 may not define a proper proba-

bility distribution for some values of r, because Pr�Tr
s,c � t� may be

bounded by some value less than 1 for all values of t. In other
words, the first-passage times Tr

s,c must be viewed as distributed on
the extended set of nonnegative reals, [0,�], with infinity a pos-
sible value for Tr

s,c, attainable with a nonzero probability. Such
random variables are called incomplete (Dzhafarov, 1993), im-
proper (Marley & Colonius, 1992), or defective (Feller, 1968).
Although completeness of first-passage times has been taken as a
defining requirement in some past analyses of race models
(Townsend, 1976), we hold that incompleteness of individual
first-passage times is not problematic because it has a natural cause
and interpretation: a threshold can be set too high for a process
ever to cross it (Dzhafarov, 1993). As long as Tr

s,c is complete for
at least one r, the observed RT, equal to min �T1

s,c, . . . ,Tn
s,c�, will

be complete as well (i.e., a response will occur on every trial).

Allowing for some response processes to have incomplete
first-passage distributions is necessary for Theorem 3 to hold.
This is because there exist R&T distributions that cannot be
represented by an independent race model if all processes are
required eventually to reach threshold with probability 1. This
can be seen by constructing a model in which some first-
passage distributions are incomplete and showing that the R&T
distribution predicted by this model has no other independent
race representation in which the first-passage distributions are
all complete. This result (proved in Appendix A) will be useful
in the next two subsections in determining conditions for cer-
tain model classes to be universal.

Theorem 4. (Incomplete termination times). For any subset
{r1, . . . , rm} of the response options {1, . . . , n}, where 0 � m �
n, there exists an R&T distribution G(r,t) such that any indepen-
dent race model generating G has first-passage distributions that
are incomplete for r1, . . . , rm and that are complete for the
remaining responses.

Note that the choice of the subset {r1, . . . , rm} in this theorem
can be different for different conditions and stimuli. Some models
(including Grice et al., 1982; McClelland, 1979; and the LBA, as

p( ) t 

1 

2 

R1(t) 

R2(t) 

RT 

a 

0 

Start-point 
distribution 

Growth-rate 
distribution 

t0 

b 

t0 

Incorrect Response 
b 

t0 

Correct Response 

A C 

B 

Figure 1. Illustrations of three modeling frameworks for two-alternative speeded choice. A. Grice modeling
framework. Before stimulus onset, the thresholds (�1 and �2) are probabilistically sampled for each response. The
threshold distributions can be arbitrarily chosen, and here they are taken to be independently and identically
distributed, according to the exponential density function p(�) shown at left. Stimulus onset (at time t � 0)
triggers deterministic response processes R1(t) and R2(t). The first process to reach its threshold (here, R1)
determines the response and the reaction time (RT). B. Linear ballistic accumulator (LBA). Response processes
are linear, racing to a common threshold (b). The growth rate and starting point of each process are sampled from
Gaussian and uniform distributions, respectively. Nondecision time (t0) is added to the time of the winning
process to determine RT. C. Diffusion model. A single stochastic process evolves until it reaches either decision
threshold (0 for response 1 or a for response 2). The growth rate and starting point are sampled from Gaussian
and uniform distributions, respectively. Nondecision time t0 is sampled from a uniform distribution.
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discussed below) allow for a global incompleteness of RT, a
positive probability that no response is given in a trial. Depending
on ramifications, this property may be viewed as a construction
deficiency or as the reflection of a true empirical phenomenon. In
the latter case, we may allow for m � n in Theorem 4.

Universal Variants of the Grice Framework

Given a Grice model M � ((R1
s,c(t), �1), . . . , (Rn

s,c(t), �n)) (with
deterministic response processes and stochastic thresholds), one
can define equivalent models in which the thresholds are deter-
ministic and all stochasticity resides in the response processes. The
new models are equivalent to M in the sense of accounting for (i.e.,
generating) precisely the same R&T distributions.

In view of the discussion of the LBA and diffusion models
below, it is especially interesting to consider the immediately
obvious equivalents of a Grice model in which the thresholds are
deterministic, and each response process has a fixed shape (for any
given stimulus and condition), but the growth rates or starting
points vary randomly across trials (see Figure 2). For example, let

 be any strictly increasing nonnegative function, define a random
growth rate for each response process by

kr �
1


��r�
(under our assumptions, Pr[kr � �] � 1) and define the (deter-
ministic) shape of each process by

R̃r
s,c�t� � 
�Rr

s,c�t��.

Then the model defined by

M′ � ��k1R̃1
s,c�t�, �̃1 � 1�, . . . , �knR̃n

s,c�t�, �̃n � 1�� (13)

is equivalent to the Grice model M. The equivalence follows from
the fact that

krR̃r
s,c�t� � 1 if and only if Rr

s,c�t� � �r.

Analogously, let zr be a random starting point (i.e., offset) for
process r, defined by

zr � 1 � 
��r�.

Then the model defined by

M� � ��z1 � R̃1
s,c�t�, �̃1 � 1�, . . . , �zn � R̃n

s,c�t�, �̃n � 1�� (14)

is also equivalent to the Grice model M. The equivalence here
follows from

zr � R̃r
s,c�t� � 1 if and only if Rr

s,c�t� � �r.

Because of the universality of the Grice framework, Equations
13 and 14 also define universal modeling languages, provided the

functions R̃r
s,c�t� are treated as free in fitting R&T distributions.

Moreover, the choice of the distribution for kr or zr is arbitrary
(because the distribution of �r in the Grice representation is),
except for the requirement of nonvanishing density on an appro-
priately chosen open domain. We summarize these observations in
the following two theorems.3

Theorem 5. Let k1, . . . , kn be stochastically independent non-
negative random variables, each kr having a nonzero density on its
domain (inf kr, sup kr). Then for any family of R&T distributions
Gs,c(r,t), there exist deterministic, nondecreasing, and nonnegative

functions R̃r
s,c�t� such that

��k1R̃1
s,c�t�, 1�, . . . , �knR̃n

s,c�t�, 1��
is an independent race representation for Gs,c(r,t).

Theorem 6. Let z1, . . . , zn be stochastically independent ran-
dom variables, each zr having a nonzero density on its domain (inf
zr, sup zr), with maxr sup zr � 1. Then for any family of R&T
distributions Gs,c(r,t), there exist deterministic, nondecreasing,

and nonnegative functions R̃r
s,c�t� such that

��z1 � R̃1
s,c�t�, 1�, . . . , �zn � R̃n

s,c�t�, 1��
is an independent race representation for Gs,c(r,t).

These straightforward results show that the essence of the Grice
framework is not in the assumption of deterministic processes and
random thresholds. Rather, its essence is in how the difference
between thresholds and processes, �r � Rr

s,c(t), is separated into
deterministic and random components. In the Grice representation
and in the equivalent representations of Theorems 5 and 6, the
deterministic components (i.e., the shapes of the response pro-
cesses) are stimulus- and condition-dependent and free to vary in
fitting data, whereas the random parts of the models (thresholds,
growth rates, or starting points, respectively) have fixed (and
essentially arbitrary) distributions. In contrast, in the LBA model-
ing language considered next, the randomly varying growth rates
are stimulus-dependent and free to vary, whereas the shape of the
processes is fixed (chosen to be linear).

Universality of the Linear Ballistic Accumulator

The LBA is a stochastic race model that has been recently
proposed as a model of human choice RT (Brown & Heathcote,
2008; Donkin, Averell, Brown, & Heathcote, 2009; Donkin,
Brown, Heathcote, & Wagenmakers, 2011). One advantage that
has been claimed for the LBA is its simplicity, relative to other
models of choice RT (e.g., Ratcliff, 1978; Usher & McClelland,
2001). Nevertheless, we demonstrate that, aside from a selective
influence assumption, and aside from two distributional assump-
tions that have received little attention or justification, the LBA is
universal, in that it can reproduce any possible R&T distribution.
Therefore the predictive constraints in the LBA derive entirely
from these assumptions.

Each response process Rr
s,c(t) in the LBA, once initiated at the

start of a trial, deterministically follows a simple linear function,

Rr
s,c�t� � zr

c � kr
st, (15)

and the processes race to a common deterministic threshold, �r
s,c �

bc. Stochasticity in the LBA comes from two sources: variability in
the starting points of the processes (zr

c) and variability in their

3 Theorems 5 and 6, respectively, correspond to Lemmas 1.3.2 and 1.3.1
in Dzhafarov (1993). Unfortunately, it is erroneously stated in those
lemmas that kr and zr (using our present notation) can be defined as random
processes kr(t) and zr(t) rather than within-trial constants.
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growth rates (kr
s). Both of these variables are sampled indepen-

dently on each trial for each response process. Thus, the LBA is a
subclass of independent race models.

The starting points are sampled from a uniform distribution
ranging from 0 to Ac, where Ac is a free parameter constrained to
be less than the common threshold bc:

zr
c 
 U�0, Ac�, (16)

where � stands for “is distributed as.” Note that this start-point
variability is equivalent to independent variability in the threshold
for each response (i.e., setting �r

c � bc � zr
c and constraining the

starting points to zero).
The growth rates are sampled from Gaussian distributions, with

a common fixed variance and means that vary across responses
and stimuli:

kr
s 
 N�vr

s, �2�. (17)

The choice of Gaussian distribution implies there is a nonzero
probability of a negative growth rate, in which case the process
will never terminate. The first-passage distributions are thus in-
complete random variables for all responses. This also implies
global incompleteness (i.e., a nonzero probability that no response
will be given), although Brown and Heathcote (2008) reported
that, in fits to empirical data, the probability of all growth rates
being negative is typically less than 0.5%.

Finally, the LBA assumes a nondecision time, t0, which is
constant across trials and conditions and is added to the first-
passage time of the winning process to determine total RT on each
trial. Table 1 summarizes the parameters of the LBA model. As

indicated by the superscripts, the threshold and start-point vari-
ability are assumed to depend on condition (e.g., a higher threshold
for accuracy vs. speed instructions), and the mean growth rate is
assumed to depend on the stimulus (e.g., a higher mean for the
correct response for easier stimuli).

Random variability in starting points and in growth rates is
critical to the LBA’s ability to match empirical data (Brown &
Heathcote, 2008). Start-point variability allows the model to pre-
dict rapid incorrect responses, whereas growth-rate variability
allows it to predict slow incorrect responses. The first mechanism
is more important in tasks with short RTs (e.g., under high dis-
criminability or speed instructions), where the starting points can
be close to the threshold, whereas the second is more important in
tasks with long RTs (e.g., under low discriminability or accuracy
instructions). Thus, these mechanisms can together produce error
RTs that are shorter (on average) than correct RTs in easy tasks but
that are longer on difficult tasks, an empirical pattern that has
proven especially challenging for models of speeded choice (Rat-
cliff & Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999).

Despite the centrality of these two sources of variability to the
LBA model’s predictions, the specific assumptions regarding the
shapes of the distributions—uniform for starting points, Gaussian
for growth rates—has received little discussion or theoretical
justification. Indeed, Brown and Heathcote (2008, p. 160) state
that they “chose the normal distribution for practical reasons,
because it is both tractable and conventional.” The normal distri-
bution facilitates analytic derivations of the LBA’s predictions,
and it has been commonly adopted for the distribution of growth

Table 1
Linear Ballistic Accumulation Model Parameters

Parameter Meaning Associated distribution

bc Common threshold for all response processes
Ac Upper limit on range of starting points Uniform for starting point zr

c

vr
s Mean growth rate of response process r Gaussian for growth rate kr

s

� Standard deviation of growth rate for all response processes Gaussian for growth rate kr
s

t0 Nondecision time

R1(t) 

R2(t) 

B 

t 

 = 1 

A 

t 

 = 1 

Figure 2. Illustration of Grice-equivalent frameworks of Theorems 5 and 6, based on the Grice model
diagrammed in Figure 1A. In both models, the thresholds and the shapes of the response processes are fixed.
Random variability resides in the growth rates (A) or starting points (B).
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rates in other models as well (e.g., Ratcliff, 1978). The same
considerations apply to the uniform distribution for starting points.

If these distributional assumptions are only a matter of conve-
nience and tradition, then they should not be considered a critical
part of the psychological theory. Therefore, we define the general
LBA (gLBA) as the LBA model without these distributional con-
straints. We also set aside the selective influence constraint on the
growth rate, allowing it to depend on block-level manipulations in
addition to the stimulus (see the Selective Influence section for
further discussion). Hence we denote the gLBA’s growth rates kr

s,c.
The gLBA is a significantly broader model class than the LBA,

because it replaces the LBA’s Ac, vr
s, and � parameters with

complete (nonparametric) flexibility in the start-point and growth-
rate distributions. Nevertheless, the gLBA maintains all of the
structural commitments of the LBA: linear response processes, a
common fixed threshold, and independent random variability in
starting values and growth rates for all processes. Building on the
results of The Grice Framework and Independent Race Models
section, it is easy to show that the gLBA can match any family of
R&T distributions. In fact, start-point variability is unnecessary for
this result; random variability in growth rates alone is sufficient.

Theorem 7. (Universality of general LBA). Let Gs,c(r,t) be
any family of R&T distributions. Then one can fix starting points
zr

c at zero and threshold bc at an arbitrary positive value b for all
c and find a set of random growth rates kr

s,c under which the gLBA
perfectly reproduces Gs,c. Furthermore, this can be done for
any choice of t0 less than the minimal possible RT (i.e., with
Gs,c(·,t0) � 0 for all s and c).

The proof of this result (given in Appendix A) is based on the
fact that the first-passage time of each response process is a
function of its growth rate:

Tr
s,c � �

b

kr
s,c � t0 if kr

s,c 	 0

� if kr
s,c � 0. (18)

It is thus straightforward to define a distribution on kr
s,c so that Tr

s,c

takes on any desired distribution (bounded below by t0). In par-
ticular, the growth-rate distributions can be chosen so that the
first-passage distributions satisfy Equation 11, which by Theorem
3 implies the model will reproduce Gs,c. In other words, flexibility
of growth-rate distributions gives the gLBA complete flexibility in
its first-passage distributions, and from Theorem 3 this is sufficient
to make the model universal.

This universality property can easily be extended to cover
variants of the ballistic accumulator framework in which the linear
form of the LBA’s response processes is replaced by other forms
(e.g., Brown & Heathcote, 2005). Specifically, let Lr(t) be any
family of strictly increasing, continuous, deterministic functions
with Lr(0) � 0 and define a model in which response processes
evolve according to

Rr
s,c�t� � kr

s,cLr�t�,

governed by random growth rates kr
s,c and racing to a common

threshold b. Then the growth-rate distribution for each response
can again be chosen to generate any desired first-passage distri-
bution. Therefore any model of this form is universal, for any a
priori choices of Lr and b. We state this result formally as follows
(see Appendix A for proof).

Theorem 8. (Universal ballistic models with random growth
rates). Let b be any positive number, and L1(t), . . . , Ln(t) be
strictly increasing continuous functions with Lr(0) � 0. Then for
any family of R&T distributions Gs,c(r,t), there exist random vari-
ables k1

s,c, . . . kn
s,c such that

��k1
s,cL1�t�, b�, . . . , �kn

s,cLn�t�, b��
is an independent race representation for Gs,c(r,t).

The universality of the gLBA can be seen as a special case of
this result, by taking Lr(t) � max {0, t � t0}.

Finally, instead of assuming random variability in the growth
rates (with fixed starting points), one can assume random variabil-
ity in the starting points (with fixed growth rates). This framework
is also universal, subject to the caveat below regarding the shapes
of the response processes.

Theorem 9. (Universal ballistic models with random starting
points). Let b be any positive number, and let L1(t), . . . , Ln(t) be
strictly increasing continuous functions with Lr(0) � 0 and
limt¡�Lr�t� � b. Then for any family of R&T distributions Gs,c(r,t),
there exist random variables z1

s,c, . . . ,zn
s,c with 0 � zr

s,c � b such
that

��L1�t� � z1
s,c, b�, . . . , �Ln�t� � zn

s,c, b��
is an independent race representation for Gs,c(r,t).

The proof of Theorem 9 (given in Appendix A), relies on the
same principle as Theorems 7 and 8: Each response process can be
made to take on any desired first-passage distribution, in this case
through appropriate choice of the start-point distribution. Note that
the condition limt¡�Lr�t� � b is critical for this construction. If this
constraint does not hold—that is, Lr(t) � b for some r and t—then
the response process Lr(t) 
 zr

s,c will cross b at some finite time
regardless of the starting point zr

s,c. Consequently, the first-passage
time Tr

s,c will be a complete random variable, no matter how zr
s,c is

distributed.4 Thus, by Theorem 4, the representation will not be
universally applicable. For example, the LBA (with linear re-
sponse processes) cannot be made universal solely through start-
point variability, because in that model limt¡�Lr�t� � � for all
responses. However, other ballistic accumulator models can be
made universal through start-point variability alone, provided their
response processes have finite limits (e.g., Lr(t) � 1 � e�t).5

As the proofs of the preceding theorems show, universality of
the gLBA and its variants is a straightforward mathematical fact.

4 If one were to allow negative starting points, the condition in question
would change to Lr(t) being bounded from above (not necessarily by b).
Other straightforward modifications of this theorem and of the previous
one are mentioned in Appendix A.

5 The nonlinear ballistic accumulator model proposed by Brown and
Heathcote (2005) has response processes with finite limits, but it cannot
be made universal through start-point variability because starting points
there do not act additively and do not affect the processes’ asymptotes.
However, universality through random starting points would hold under
a minor modification to the model’s decay term, replacing ��Rr

s,c(t)
with ��(Rr

s,c(t) � zr
s,c) so that decay is toward the starting point instead

of zero (see Brown & Heathcote, 2005, Equation 1). We consider this
change an implementational detail with no substantive bearing on the
model’s theoretical content. Moreover, Ratcliff and Smith (2004) advo-
cate exactly this modification to the decay term in the OU model (which we
adopt here; see Equation 19), because it enables the effects of start-point
variability to persist rather than be lost to decay.
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However, its implications for the standard LBA seem to have been
overlooked. Specifically, this result implies that the predictive
power of the standard LBA lies in its assumptions regarding
growth-rate and start-point distributions (which have heretofore
been treated as implementation details), together with the selective
influence assumptions regarding how model parameters can vary
across stimuli and experimental conditions. We return to the im-
plications of these latter assumptions in the Selective Influence and
Translating the LBA and Diffusion Models Into the Grice Frame-
work sections.

Universality of Diffusion Models

We now consider a different class of RT models, in which
response processes exhibit within-trial stochasticity, derived from
Brownian motion, in addition to between-trial stochasticity in
starting points and growth rates. Two such models are considered
here: the Wiener diffusion model (Ratcliff, 1978) and the OU
model (Busemeyer & Townsend, 1993), which we collectively
refer to as diffusion models. In addition to the presence of diffu-
sion, the diffusion models considered here (for binary choice tasks)
can be contrasted with the LBA model in that they assume a single
response process that can evolve in positive or negative directions
until it reaches either an upper or a lower threshold. The model can
be equivalently formulated with a separate process for each re-
sponse, but under that representation the stopping rule is based on
their difference rather than on the value of each process taken
separately (as in the LBA).

Specifications for the diffusion model are taken from Ratcliff
and Smith (2004), who treat the OU model as a generalization of
the Wiener model. The response process in any experimental
condition, Rs,c(t), is a stochastic process defined by a random
starting point, zc, a random growth rate, ks (also referred to as drift
rate), and a diffusion rate, �2. The OU model includes a decay term
with parameter �, which is set to 0 for the Wiener model. The
dynamics on each trial can be defined by the following stochastic
differential equation:

dRs,c�t� � �ks � ��Rs,c�t� � zc��dt � �dB�t�. (19)

Here, B(t) represents a Brownian motion process. The diffusion
parameter, �, is generally treated as fixed, because changing its
value can always be nullified by rescaling other model parame-
ters.6 On each trial, an accumulation process starts, at the time of
stimulus onset, at Rs,c(0) � zc. The process terminates when it
crosses either a lower threshold set at 0, or an upper threshold, ac,
corresponding to responses r � 1 and r � 2, respectively. Which
threshold is crossed first and the time of the first passage determine
the response and RT, respectively.

Additional model parameters determine random variability
across trials, following the same assumptions as adopted in the
LBA model (Brown & Heathcote, 2008). The starting point of the
diffusion process, zc, is drawn from a uniform distribution with
mean z�c, which is a free parameter when modeling response bias
and is otherwise fixed at ac/2. The range of this distribution, which
we denote �z, is constrained to be less than min�2z�c,2�ac � z�c��, so
that zc always lies between 0 and ac. The growth rate, ks, is drawn
from a normal distribution with mean vs and variance �2. In
addition, the nondecision time, t0, is drawn from a uniform distri-

bution with mean Ter and range �t (where �t � 2Ter). The nonde-
cision time on each trial is added to the first-passage time of the
diffusion process to predict total RT. Table 2 summarizes
the parameters of the diffusion model. As the notation indicates,
the diffusion model incorporates the selective influence assump-
tions that trial-level variation in stimuli affects only vs, whereas
block-level manipulations affect only ac and z�c (and �z in some
implementations; e.g., Ratcliff & Rouder, 1998).

The diffusion model, and discrete-time (random walk) variants,
were originally motivated by the sequential likelihood ratio test,
which performs optimal Bayesian inference over a stream of noisy
data (Stone, 1960). Under this interpretation, the input stream
represents the momentary likelihood ratio of sensory evidence,
assumed to be white noise with a nonzero mean. The goal is to
infer whether the mean is positive or negative, corresponding to
one or the other correct response. The diffusion process is the
integral of the input stream over time (or sum, in the discrete-time
case), and responding once this process reaches a threshold is
equivalent to waiting until the Bayesian posterior for one response
reaches some predetermined threshold probability. This pure nor-
mative model is a special case (with no decay and no variability in
growth rates or starting points) of the full diffusion model defined
here. However, it makes empirically incorrect predictions, such as
equality of mean RTs for correct and error responses (Laming,
1968; Ratcliff, 1978). Including random variation in starting points
and growth rates has been found to solve these problems and
enables the diffusion model to provide excellent fits to data (Rat-
cliff & Rouder, 1998; Ratcliff & Smith, 2004; Ratcliff et al., 1999).
However, an important question is whether these fits are at least to
some extent due to the model’s architecture, or they are solely
consequences of the flexibility afforded by the inclusion of this
random variability.

It turns out the answer is the latter: the only predictive con-
straints of the diffusion model—with random variability in
growth-rate, start-point, and nondecision time included—come
from the technical assumptions about the shapes of these distribu-
tions, together with the selective influence assumption that growth
rate does not depend on conditions fixed within each block of
trials. As with the LBA results presented in the previous section, if
these assumptions are removed, the diffusion model becomes
universally applicable. Once again, the model is universal from
growth-rate variability alone; the other sources of variability are
unnecessary.

We refer to the diffusion model without restrictions on the
growth-rate distribution as the general diffusion model (gDM). As
with the gLBA, we allow the growth-rate distribution to depend on
block-level manipulations in addition to stimuli (see the Selective

6 However, fixing this parameter while fitting multiple experimental
conditions, with constraints linking other parameters across conditions,
imposes unintended limitations on the model (Donkin, Brown, & Heath-
cote, 2009). With the diffusion model, this constraint leads to an additional
conceptual problem. Although it is often assumed that the only parameter
that can vary as a function of stimulus within a block of trials is the mean
growth rate, the standard process interpretation of the model as sequential
sampling implies that the diffusion rate should also depend on the stimulus.
Indeed, there are variants of the diffusion model that predict such a
dependence (Busemeyer & Townsend, 1993). Fixing the diffusion rate
across stimuli thus removes flexibility that theoretically should be present.
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Influence section for more discussion of this assumption). All other
model parameters are independent of the stimulus.

To see that the gDM is universal, consider the special case with
no diffusion (� � 0), no decay (� � 0), no start-point variability
(�z � 0), no nondecision variability (�t � 0), fixed ac � a, and no
response bias �z� � a⁄2�. Under these assumptions, the accumula-
tion process always follows a linear path starting at a/2. The only
variability in the model comes from variation across trials in the
growth rate, ks,c. Under this simplified model, the response and RT
are determined according to

r ��1 if ks,c � 0

2 if ks,c 	 0 (20)

and

RT � Ter �
a

2�ks,c�
.

(21)

It is easy to see that appropriate specification of the growth-rate
distribution can generate any desired R&T distribution. Equations
20 and 21 show there is a one-to-one mapping between ks,c and the
pair (r,RT). Therefore, any joint distribution on r and RT can be
directly translated to a distribution on ks,c.7 This correspondence
leads to a universality result for the general Wiener diffusion
model (see Appendix A for proof).

Theorem 10. (Universality of general Wiener diffusion
model). The gDM can reproduce any family of R&T distributions
over two responses. Moreover, this is possible without diffusion,
decay, random variability in starting points or nondecision time,
or response bias �� � � � �z � �t � 0, z�c � ac ⁄ 2�, for any fixed
ac � a, and for any Ter with Gs,c(·,Ter) � 0 for all s and c.

Similar to the result of Theorem 8 above, linearity of the
response process is not essential for universality of the diffusion
model. The same conclusion holds when the response process
takes the form ks,cL(t) 
 zc, where L(t) is any continuous, strictly
increasing function with L(0) � 0. In particular, the OU model
follows this form (again, in the limiting case of no diffusion), for
any value of the decay rate, �. Therefore, the OU model is
universal for any predetermined value of � (see Appendix A for
proof).

Theorem 11. (Universality of general Ornstein-Uhlenbeck
model). The gDM can reproduce any family of R&T distributions
over two responses, for any predetermined choice of �. Moreover,
this is possible without diffusion, random variability in starting
points or nondecision time, or response bias �� � �z � �t �

0, z�c � ac ⁄ 2�, for any fixed ac � a, and for any Ter with Gs,c(·,Ter) �
0 for all s and c.

Although these universality results are based on simplified
versions of the diffusion model, reintroducing the model’s other
free parameters (�, �z, �t, ac, and z�c) only confers the model
additional flexibility—or would, if it were not already universal.
One might ask instead how the universality property fares if some
of the parameters set to zero in Theorems 10 and 11 are fixed at
other values. In particular, if diffusion is taken as a theoretical
commitment of the model, then one could require the diffusion rate
to be strictly positive (� � 0). Such an assumption might be
expected to constrain the model’s predictions, because of the
smoothing effect diffusion has on the predicted RT distributions.
In fact, Ratcliff (2013) suggested that stochasticity in the diffusion
process “washes out” any effects of growth-rate and starting-point
distributions during the course of the trial, so that the choice of
these distributions has little effect on model predictions. If this
suggestion were correct, it would limit the practical significance of
the present universality arguments, in that flexibility in growth-rate
distribution might add little flexibility to the model’s predictions
when � � 0.

One response to Ratcliff’s (2013) claim is that a model with a
fixed positive diffusion rate can be brought arbitrarily close to one
without diffusion by rescaling other variables. Specifically, the
arbitrary internal scale of the response process can be freely
changed, by multiplying �, ks, zc, and ac by any number x � 0
(substitute x·Rs,c(t) for Rs,c(t) in Equation 19, and the equation
holds under these rescaled parameters). Consider an arbitrary R&T
distribution G(r,t) and a gDM model with � � 0 reproducing that
distribution, as provided by Theorem 10 or 11. By a continuity
argument, G(r,t) can also be approximated arbitrarily well by
taking � to be positive but sufficiently close to zero. We can then
scale up the parameters of the model so that � is equal to any
desired value. Therefore, absent any constraints on these other
variables, the diffusion model can approximate any R&T distribu-
tion to arbitrary precision, for any a priori choice of �. This
conclusion is summarized in the following theorem (see Appendix
A for proof).

Theorem 12. (Universality with strictly positive diffusion).
Let G(r,t) be any R&T distribution admitting a well-defined density

7 The case ks,c � 0 corresponds to t � �, so if global incompleteness is
excluded (i.e., a response is given on every trial), then ks,c � 0 will be
assigned zero probability.

Table 2
Diffusion Model Parameters

Parameter Meaning Associated distribution

� Decay rate; set to 0 for Wiener model
ac Threshold separation
� Diffusion rate
vs Mean growth rate Gaussian for growth rate ks

� Standard deviation of growth-rate distribution Gaussian for growth rate ks

zc Mean starting point Uniform for starting point zc

�z Range of start-point distribution Uniform for starting point zc

Ter Mean nondecision time Uniform for nondecision time t0
�t Range of nondecision distribution Uniform for nondecision time t0
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g(r,t). Choose any values of � � 0 and �, and let ε be any positive
constant. Then there exists a gDM model with those values of �

and � for which the predicted R&T distribution G̃�r,t� satisfies

max
r,t

�G�r, t� � G̃�r, t��� ε

for all r and t.
One might argue that Theorem 12 allows the model’s parameter

values to be “unreasonably large.” However, there is no a priori
basis for what parameter values are or are not reasonable. There
are values that have typically been found in fits of the Gaussian-
drift model, but if the model had found dramatically different
values, then those would be the values considered typical and
reasonable. Moreover, the fact that the values found have been
somewhat consistent across applications is not evidence that those
values are correct. If the model is misspecified, then its parameters
will be systematically and consistently biased.

Considerations of parameter values depend on assumptions
about both the scale of the model’s internal evidence dimension
and the scaling of time. This dependence can be made explicit by
defining a time constant � � a2/�2 (the time it takes for the
standard deviation ��t of the diffusion process to equal the thresh-
old separation a) and then reparameterizing the model with a new

response process R̆ � R ⁄ a and time scale � � t/�. Under this
reparameterization, the starting point, growth rate, and decay rate

become z̆ � z⁄a, k̆ � �k⁄a, and �̆ � ��. These transformations
remove the scaling of the internal evidence dimension and the
scaling of time. The model’s dynamics are now defined by

dR̆��� � �k̆ � �̆�R̆��� � z̆��d� � dB��� (22)

with

t � ��. (23)

Equation 22 matches the original dynamics of Equation 19 except
that the diffusion rate and threshold separation are no longer free

parameters (both are fixed at unity), and the variables R̆, z̆, k̆, �̆,
and � are all dimensionless. The model’s only free parameters are
the starting point and growth rate (both random variables) and the
time constant � that scales the model’s predictions onto physical
time.

The utility of this reparameterization is that it shows more
directly how diffusion constrains the model’s predictions. Specif-
ically, diffusion is appreciably constraining only for larger values
of �, whereas for smaller values the model is arbitrarily flexible.
The situation is illustrated in Figure 3. Figure 3A shows the

possible predictions of the model in the case of z̆ � 1 ⁄ 2 and �̆ � 0
(no response bias, start-point variability, or decay). The two fam-
ilies of curves represent possible RT distributions for the two
responses, each curve corresponding to a single value of the

growth rate k̆. Growth rates closer to zero produce the broader
curves to the right, and they also produce significant rates of the
less likely response (shown as dashed curves, with each dashed
curve corresponding to a solid curve for the opposite response).
Larger growth rates—positive or negative—produce the narrower
curves to the left, which are more separated and have negligible
rates of the alternate response.

Under a free growth-rate distribution, the predictions of the full
model are an arbitrary mixture of the curves for individual values

of k̆. For larger values of �, the form of this mixture is constrained,
both across times (i.e., smoothness in the RT distribution) and

0 0.05 0.1 0.15 0.2

A 

t (s) 
0              .05              .1             .15             .2 
0             .005           .01           .015           .02 

B 

0 0.5 1 1.5 2

Figure 3. Illustration of the flexibility from temporal scaling of the
general diffusion model (gDM) when the model is expressed in dimen-
sionless parameters (Equation 22). A. The possible predictions of the
model in terms of the dimensionless time parameter �. For simplicity, the
dimensionless starting point z̆ is constant at 1/2, and the decay rate is zero.
Each curve represents a theoretical reaction time (RT) distribution pre-

dicted under a particular value of the dimensionless growth rate k̆. Upper
curves represent RTs for one response and lower curves for the other

response. Values of k̆ used were 0, �1, �2, �4, �8, �16, �32, �64,
�128, �256, �512. Dashed curves represent the less likely response for

each growth rate (lower response for k̆ 	 0 and upper response for k̆ �

0) and are only visible for k̆ � �1, �2, and � 4. The pair of curves for

each value of k̆ is normalized by its maximum for ease of viewing.
Predictions of the full model (with random growth rate) for each stimulus
and condition are an arbitrary linear combination of curves like the ones
shown (subject to the constraint that total probability across responses and
times equals unity). This graph shows how the model is constrained in its
predictions for larger values of �, in terms of links across different times
and across the two responses, but these constraints become vanishingly
weak as � approaches zero. B. Example RT data, taken from Jones et al.
(2013, Experiment 2, low coherence condition). The upper and lower pairs
of curves correspond to the two responses, with black and gray correspond-
ing to two different stimuli. The data are defined in real time (seconds), and
there is flexibility in how this time scale maps onto the abstract scale of the
model. The two � scales below the graph represent two possible mappings,
corresponding to values for the timescale parameter, �, of 10 s (upper �
scale) or 100 s (lower � scale). Each mapping implies a different placement
of the empirical data within the space of possible model predictions shown
in Figure 3A. The gDM may or may not provide a good fit with a small
value of �, but it is guaranteed to provide a good fit with a larger value.
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between responses. For values of � approaching zero, the mixture
becomes arbitrarily flexible. When confronted with empirical data,
such as the distributions shown in Figure 3B (typical data, from
Jones, Curran, Mozer, & Wilder, 2013), one cannot know to what
values of � they correspond without knowing the time constant �.
If the data correspond to larger � values (smaller �), then diffusion
appreciably limits the model’s flexibility, but if the data corre-
spond to smaller � values (larger �) it does not. The time constant
� depends on both the diffusion rate and the threshold separation,
neither of which can be objectively determined based on behav-
ioral data. It may be possible to use neural or other process-level
data to measure these quantities, but as we caution in the Discus-
sion section, any such endeavor depends on strong assumptions
about how the cognitive model maps onto physical processes.

An Example

To illustrate the universality results, this section gives an exam-
ple of the gLBA mimicking the diffusion model. Universality of
the gLBA implies it can perfectly match the R&T distribution
predicted by the diffusion model (for any values of that model’s
parameters), under appropriate specification of the gLBA’s
growth-rate distributions.

Figure 4A shows the predictions of the standard diffusion model
for a single stimulus and condition, using typical values of its
parameters (� � 0, a � .1, � � .1, v � .15, � � .15, z� � .05, �z �
.03, �t � 0; Ter arbitrary because it can be matched by t0 in the
gLBA).8 Each track indicates a sample trajectory of the diffusion
process for one hypothetical trial. The curves paralleling the two
thresholds indicate the model’s predicted R&T distribution. Each
curve shows the conditional RT distribution for correct (upper) or
incorrect (lower) responses, with total area under the curve indi-
cating response probability. These curves were calculated analyt-
ically using methods described in Appendix B.

The diffusion model’s predicted R&T distribution was con-
verted to a joint hazard function and then translated into first-
passage distributions for an independent race model using Equa-
tion 11. According to Theorem 3, any independent race model
generating these first-passage distributions will perfectly match
the diffusion model’s predictions. Figure 4B shows an instance
of the gLBA derived to satisfy this condition. The curve par-
alleling the threshold for each response is the first-passage
distribution obtained from Equation 11. The gLBA can trivially
reproduce these (or any other) first-passage distributions through
flexibility of its growth-rate distributions. Figure 4C shows the
growth-rate distributions used in Figure 4B. In summary, by adopt-
ing these growth-rate distributions, the gLBA perfectly mimics the
diffusion model. Moreover, it achieves this without the start-point
variability assumed by the standard LBA.

The growth-rate distributions in Figure 4C do not conform to the
Gaussian shape assumed by the standard LBA. However, there is
no evident reason that these distributions should be considered any
less psychologically plausible than Gaussian ones. Therefore, the
theoretical principles underlying the LBA are empirically indistin-
guishable from the diffusion model, despite the significant struc-
tural differences between the two modeling frameworks. Any
differences in predictive success between the two models are
informative only in the context of the technical assumption of
Gaussian growth-rate distributions.

Summary of Universality Results

The preceding sections demonstrate that several important psy-
chological models of choice RT become unfalsifiable when certain
parametric and selective influence assumptions are removed. The
parametric assumptions include the shapes of response processes
and the probability distributions of their growth rates and starting
points. We refer to the models without these assumptions as
universal, because they can match any joint distributions of re-
sponse and RT.

Three families of models were analyzed: the Grice framework
(Grice, 1968), ballistic accumulators (Brown & Heathcote, 2005,
2008), and diffusion models (Busemeyer & Townsend, 1993;
Ratcliff, 1978). A principal difference among these families con-
cerns which component of the model is free to vary when fitting
data for different stimuli and experimental conditions. In the Grice
family, the free part of the model is deterministic, and the stochas-
tic component of the model follows a predetermined distribution.
In the original Grice framework, the (deterministic) response pro-
cesses are free and condition-dependent, and the thresholds follow
a predetermined (though arbitrary) probability distribution (Theo-
rems 1 and 2). In the two equivalent variants considered in the
Universal Variants of the Grice Framework section, the stochastic
component is moved to the growth rates of the response processes
(Theorem 5) or to their starting points (Theorem 6). In all three
cases, allowing full (nonparametric) flexibility in the models’
deterministic components makes them universal.

In the results for the generalized LBA and diffusion models,
universality comes from freedom in stochastic components of the
models (i.e., freedom in their probability distributions). Allowing
full flexibility in the distribution of growth rates across trials was
shown to make the LBA (Theorems 7 and 8), Wiener diffusion
(Theorem 10), and OU models (Theorem 11) all universal. In
addition, ballistic accumulators that assume bounded nonlinear
response processes can be made universal through flexibility in
their distributions of starting points (Theorem 9).

The universality results for ballistic accumulator models can be
viewed as stemming from the universality of the first-passage
distributions of their individual response processes. Allowing full
flexibility in growth-rate distributions or (in some cases) start-
point distributions enables the first-passage distributions to take on
any desired form. From Theorem 3, this flexibility of first-passage
distributions allows the model to match any desired R&T distri-
butions. The same reasoning applies to the Grice framework when
the thresholds are chosen to be mutually independent—freedom in
the shapes of the response processes again provides full flexibility
in the first-passage distributions. Theorem 3 does not apply when
the thresholds are stochastically dependent, but the proof for this
case follows a similar argument (see Dzhafarov, 1993). In the
diffusion model, the relationship between the process and the
outcome (i.e., response and RT) is simpler, because there is only

8 We use seconds as the unit of time whenever referencing numerical
values of model parameters. The internal scale of the response process is
in arbitrary units.
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one process.9 In the limit case with no diffusion, the relationship is
one-to-one, and it is straightforward to translate any R&T distri-
bution directly into a distribution of growth rates under which the
model reproduces that R&T distribution.

An advantage frequently cited for stochastic-accumulation mod-
els of speeded choice is that they jointly capture the overall
response probabilities and the RT distribution associated with each
response. The implied suggestion is that there is some coupling
among these measures inherent in the models, so that fitting all of
them simultaneously is a more stringent test. The universality
results imply there is no such coupling, other than that arising from
the parametric and selective influence assumptions. Complete free-
dom in the joint distribution of response choice and RT is equiv-
alent to freedom in the marginal response probabilities and in the
conditional distribution of RT under each separate response. In
other words, a universal model can fit all of these measures
simultaneously and independently.

The gLBA and gDM models defined here have not been a focus
of previous research, and it might be argued that their unfalsifi-
ability is, taken alone, not directly relevant to the extant literature.
The primary theoretical import of the universality results lies in
their implications for the standard, parameteric versions of the
models that have been central to research on speeded choice.
Although the standard models are falsifiable, we have shown that
their predictive constraints derive entirely from parametric and

9 Diffusion processes have also been proposed within the framework of
race models, with one diffusion process per response (Bogacz & Gurney,
2007; Jones, Mozer, & Kinoshita, 2009; see also Usher & McClelland,
2001). Universality of such a model (with free growth-rate distributions)
can be shown by the same strategy used here with the LBA model: In the
limit of no diffusion, the model becomes a ballistic accumulator, and
Theorem 8 applies.
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Figure 4. Example of the general linear ballistic accumulator (gLBA) mimicking the diffusion model. A.
Diffusion model predictions under typical parameter values (given in main text). Response processes on sample
trials are shown in random grayscale (to facilitate discrimination). Growth-rate distribution is shown in inset, and
start-point distribution is shown at left edge. Curves paralleling thresholds show the theoretical distribution of
reaction times (RTs) for each response, scaled by response probability. B. Illustration of gLBA. Curves
paralleling thresholds are first-passage distributions, derived from Equation 11, under which any independent
race model will reproduce the diffusion model’s predictions. The gLBA matches these first-passage distributions
through flexibility in its growth-rate distributions. Gray lines show response processes on sample trials.
Start-point variability is set to zero. C. Growth-rate distributions used in B. Under these distributions, the gLBA
perfectly matches the diffusion model’s predictions. Solid � correct response; dashed � incorrect response.
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selective influence assumptions, and it is thus these assumptions
that constitute the models’ explanatory content.

Therefore, it is critical to understand the impact of these as-
sumptions on the models’ predictions, if we are to understand how
the models explain empirical phenomena. The parametric assump-
tions have received little attention in the previous literature, being
“merely” implementation details and not part of the underlying
theory. The justification for and impact of the selective influence
assumptions, when separated from the parametric assumptions,
remain undetermined too. We focus on these issues in the remain-
der of this article.

Selective Influence

An important consideration in the context of the universality
results presented in the preceding sections is the concept of selec-
tive influence. In general, selective influence refers to the notion
that changes in certain aspects of the stimulus, observation condi-
tions, or instructions to a subject might be limited in which
parameters of a model they can affect. In the domain of speeded
choice, interest in selective influence has focused primarily on two
factors: stimulus information that is not available to the subject
before the start of each trial (e.g., stimulus intensity), and the
speed–accuracy bias of the subject as often manipulated by in-
structions to emphasize one or the other (other factors not consid-
ered here include stimulus probability; e.g., Thomas, 2006). In the
context of stochastic accumulation models, it is often assumed that
stimulus information can only affect the mean growth rates of the
response processes, and not their starting points or the decision
thresholds. It is also often assumed that speed–accuracy bias can
affect only the decision thresholds (and in some cases the vari-
ability of the starting point), but not the response processes. We
refer to these as the first and second selective influence assump-
tions, respectively.

It is easy to see from the statements of the universality theorems
that the first selective influence assumption does not in itself
impart predictive constraints. That is, the gDM and gLBA frame-
works remain unfalsifiable with this assumption included. This
follows from the fact that Theorems 7, 10, and 11 all hold with the
thresholds assumed to be constant across all stimuli s and condi-
tions c (in fact, their conclusions also hold if the thresholds vary
arbitrarily across stimuli and conditions). Therefore, the first se-
lective influence assumption has no impact on the universality
results or on their relevance to extant models.

The second selective influence assumption does impart predic-
tive contraints, and the universality theorems do not hold if this
assumption is taken as an essential part of a model’s architecture
rather than an implementational assumption. This fact is evident in
the statements of the theorems and in their proofs, in that the
growth rate must be specified as a random variable depending on
stimulus and on observation conditions (ks,c), rather than depend-
ing only on the stimulus (ks). Moreover, it is not possible to extend
the proofs to cover the models with the second selective influence
assumption maintained. As a simple example, consider adding the
second selective influence assumption to the gLBA without start-
point variability. Under this model, the only allowable change
across observation conditions is in the threshold, which acts to
change the first-passage distributions of the response processes by
a scalar factor. Thus, the first-passage distribution for any response

can vary across conditions only by multiplicative scaling (i.e., it
cannot change shape). Because of the essentially one-to-one rela-
tionship, implied by Theorem 3, between the R&T distribution and
the set of first-passage distributions for all responses, this con-
straint implies the model is falsifiable. That is, it is straightforward
to construct a family of R&T distributions that, via Equation 11,
yields first-passage distributions violating the constraint of multi-
plicative scaling across conditions, and by Theorem 3 such a
family cannot be represented by the model in question.

Of course in more complex models, for example with start-point
variability or diffusion included, the predictive constraints from
the second selective influence assumption will be subtler and
weaker than in this example. One important goal for future re-
search might be to determine mathematically what those con-
straints are for different architectures (e.g., the full gLBA or
gDM). Results of this type might be useful in empirically testing
selective influence without the confound of the models’ parametric
distributional assumptions (e.g., Gaussian growth-rate distribu-
tions). Furthermore, they might be valuable in assessing the rela-
tive contribution of selective influence vis-à-vis parametric as-
sumptions in the past empirical successes of the models. Even
though the second selective influence assumption makes the mod-
els in principle falsifiable, it is possible that in practice they are not
and that the parametric assumptions have done most of the ex-
planatory work in fitting data.

In general, the value of selective influence assumptions is that
they link a model’s predictions across different conditions or
stimuli, thus offering more demanding empirical tests than fitting
one condition at a time. Nevertheless, for such an approach to be
viable, there must be strong justification for the invariance. In the
case of speeded choice, the traditional justification for the first
selective influence assumption is strong: The stimulus or stimulus
category is unknown to the subject in advance of each trial, so this
information cannot affect any “preparatory” processes such as
starting points or threshold settings. The standard justification for
the second selective influence assumption is that information
available before the start of a trial (such as the weighting of speed
vs. accuracy) can influence preparatory processes but should not
affect evidence accumulation (e.g., Ratcliff & Smith, 2004). We
consider the argument for this latter assumption to be significantly
weaker. Nothing seems to exclude a priori the dependence of
evidence accumulation not only on stimulus values but also on
instructions and other factors that act before stimulus onset. Be-
cause these factors have already been determined at the start of any
trial, they could very well affect the subject’s cognitive state in a
way that alters stimulus processing.

Indeed, models that attempt to explain the mechanisms under-
lying stochastic evidence accumulation predict that the accumula-
tion process should be affected by cognitive variables. Consider
the exemplar-based random walk model of Nosofsky and Palmeri
(1997), which explains choice RT in perceptual categorization. A
critical variable in this model is the subject’s attentional weighting
of the dimensions of stimulus variation. This weighting affects
similarity of the current stimulus to stored exemplars, which af-
fects exemplar retrieval probabilities, which in turn determine the
statistics of the random walk. Thus the model predicts different
accumulation processes (e.g., different mean growth rates) for
different attentional states. Attention switches among stimulus
dimensions also influence the diffusion processes in multiattribute
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decision field theory (MDFT; Diederich, 1997; Roe et al., 2001).
Although MDFT does not address the determinants of attention,
attention should be expected to depend on cognitive variables
relevant to the decision task. In particular, it seems reasonable that
in many decision tasks there exist different stimulus dimensions
with different speed–accuracy profiles, in that some are processed
more rapidly but others yield greater asymptotic performance. As
a simple model of this sort of tradeoff, we could assume two
attentional states, �1 and �2 (each a possible attended stimulus
dimension or a continuous-valued weighting of dimensions), with
vs,�1 � vs,�2 for all s, and ��1 � ��2. For the right values of v and
�, we might expect the subject to strategically choose �1 under
speed instructions and �2 under accuracy instructions. Starns,
Ratcliff, and McKoon (2012) make a similar suggestion in the
context of recognition memory, based on the proposal that subjects
use poorer quality memory probes under speed instructions (be-
cause better probes take longer to develop; Diller, Nobel, &
Shiffrin, 2001; Malmberg, 2008). They found that a model obeying
selective influence gave a poor fit to the data, and a model
allowing growth rates to depend on speed–accuracy instructions
yielded estimates of faster mean growth rates in the accuracy
condition.

Another way of arguing that the second selective influence
assumption is not a priori compelling is to observe that in all the
models considered the change of a threshold (or threshold separa-
tion) is mathematically equivalent to changes in other model
components (growth rate, starting point, and diffusion rate) with
thresholds left unchanged. Thus, to consider a simple case, if all
processes in the gLBA are assumed to start at zero, then a change
of a threshold by a factor x is equivalent to changes of the
growth-rate distributions by a factor of 1/x. If stated in this form,
the second selective influence assumption does not seem to be
structural. For instance, if a model with this assumption does not
fit data, one would not consider it a dramatic change to replace
multiplicative scaling of the growth rates with some other mono-
tone transformation.

In summary, of the two selective influence assumptions made by
the standard diffusion and LBA models, the first has no impact on
universality, and the second is logically suspect and perhaps even
psychologically unlikely. Therefore, to support the claim that the
models are theoretically informative in light of our results, one
would need (a) to offer some sort of argument or empirical
evidence for the second selective influence assumption, and (b) to
demonstrate that it constrains the models enough to make useful
psychological conclusions in the absence of parametric distribu-
tional assumptions.

There is also a completely different question about selective
influence assumptions, related to translating falsifiable models
between universal modeling languages. Let L and L= be two
universal (hence interchangeable) modeling languages, and let
some falsifiable model M be formulated in language L. By uni-
versality of L=, one can always translate model M from language L
to language L= to obtain a model M=, equivalent to M. The question
is could M= lose some of the selective influence assumptions made
in the original model? If the answer to this question were affirma-
tive, one might have a basis to prefer M to M= even though they are
equivalent. But the answer in fact is that model M= will necessarily
retain all the selective influence assumptions of model M. The
parameters of M will carry over to parameters in M=, and the latter

will automatically obey the same selective influence rules as do the
former. That is, if a parameter � in M is invariant with respect to
changes in some experimental factor f, then M= will include a
corresponding parameter �= that is invariant with respect to f as
well.

As an example, consider translating from the gLBA to the Grice
framework, with some prespecified threshold distribution for the
latter. Universality of the Grice framework implies there is a
canonical translation by which any model expressed in the gLBA
framework can be reexpressed as an equivalent Grice model. In
particular, such a Grice model exists for the standard LBA, with its
parametric and selective influence assumptions included. Under
this translation, the LBA’s Ac and vs parameters become parame-
ters determining the Grice response processes: Rs,c(t) � R(t; Ac, vs,
. . .), where “. . .” designates other parameters of the LBA model.
Because Ac, vs, . . . uniquely determine the RT distributions in the
LBA model, the process Rs,c(t) may be described in terms of these
and only these parameters. All selective influence assumptions are
automatically retained, only Ac and vs are now interpreted as
aspects of the process Rs,c(t) rather than of starting-point and
growth-rate distributions. The particular form of selective influ-
ence has arguably changed, but only if one assumes a naive
correspondence between modeling languages: response processes
mapping to response processes and thresholds mapping to thresh-
olds.

In the Grice language, the thresholds have fixed distributions
and only the response processes are allowed to vary. Nevertheless,
the Grice model retains selective influence unless one seriously
maintains that there is a difference between separate mathematical
“entities” and properties of a single mathematical “entity.” As a
simple example to show that such a position would be untenable,
let Rs,c(t) be Taylor-expanded as R�0� � vst � 1

2wct2 � u�t�, where
vs and wc are two selectively influenced parameters. These param-
eters can be interpreted as properties of the process Rs,c(t), namely,
its initial velocity and acceleration, so that Rs,c(t) depends on both
s and c. However, they can also be represented as aspects of
separate processes R1(t) � vst and R2�t� � 1

2wct2, additively com-
bined with R3(t) � R(0) 
 u(t). Clearly, one’s interpretation of the
selectiveness of influences in this model cannot depend on which
of these (or many other) ways of thinking about the two parameters
one adopts.

Therefore, selective influence can only aid in deciding among
modeling languages if one has a basis to claim that the form of
selective influence manifesting in one language is more psycho-
logically plausible than the form manifesting in another. With
regard to the modeling languages considered in the present article,
the next section translates the LBA and diffusion models into the
Grice framework and shows that the model parameters and their
selective influences remain just as natural and interpretable as in
the original models.

Translating the LBA and Diffusion Models
Into the Grice Framework

The core message of this article is that, when a modeling
framework is universal, the predictive content of any model ex-
pressed in that framework lies in whatever falsifiable assumptions
that model makes. For the standard LBA and diffusion models,
these assumptions are the forms of the probability distributions for
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growth rate (Gaussian), starting points (uniform), and nondecision
time (uniform, for the diffusion model), together with the selective
influence assumptions. A useful way to evaluate these assumptions
is to translate them across different modeling languages. That is,
for any falsifiable model expressed in one modeling framework, an
equivalent model can be derived in a different framework. This
translation can offer new insight into the implications of a partic-
ular model’s assumptions, and it can enable comparison of the
explanatory utility of different modeling languages.

In this section, we translate the standard LBA and diffusion
models into the Grice framework. Universality of the Grice frame-
work implies that it can exactly mimic any other model. Because
this universality holds under essentially any threshold distribution
(Theorem 1), we choose the thresholds to be mutually indepen-
dent, each following a unit-exponential distribution: Pr [�r � x] �
1 � e�x. With this choice, the response processes acquire a simple
form (see Equations 10 and 11):

Rr
s,c(t) � 	0

t
hs,c(r, �)d�, (24)

where hs,c(r, �) is the joint hazard function of the model being
translated into the Grice framework. We refer to the resulting
Grice model as a Grice representation of the original model.

The Grice representation of a model can be viewed as an
alternative way of representing the predictions of that model,
equivalent to deriving its predicted R&T distribution (or joint
hazard function, or R&T density) directly. Thus, the Grice repre-
sentations of the LBA and diffusion models can offer new insights
into the implications of those models’ assumptions. Specifically,
we systematically vary the parameters of these models, and by
observing the effects on their Grice representations evaluate what
types of flexibility the models’ parameters do and do not provide.
In addition, we derive Grice representations of the LBA and
diffusion models with their parameters fit to empirical data, and
compare the results to the Grice representation of the data set itself
(i.e., the Grice model that perfectly fits the data), to assess the
different models’ fits to data in one and the same theoretical
language (the Grice framework).

Grice Representation for the LBA

Because the LBA and Grice frameworks both comprise inde-
pendent race models, they will predict the same R&T distribution
if they agree on the first-passage distribution for each response.
Therefore, any LBA model can be translated to a Grice model by
deriving the LBA’s first-passage distribution for each response and
then deriving response processes for the Grice model that repro-
duce those distributions. The calculations are carried out in Ap-
pendix C, with Equations C4 and C5 defining a Grice model that
matches the LBA’s predictions for any parameter settings.

To assess the effects of the LBA’s parameters in a two-choice
task, b, A, v2, and � were systematically varied to produce a series
of Grice representations for each.10 Nondecision time, t0, was held
to zero in this analysis because its effect is only to shift the Grice
processes later in time. Following Brown and Heathcote (2008),
the mean growth rates for the two responses were constrained to
sum to 1, by setting v1 � 1 � v2 (where 1 and 2 represent the
nominally incorrect and correct responses, respectively).11 The
parameter values used, shown in Table 3, were chosen to be

similar to values from fits to empirical data (see Brown & Heath-
cote, 2008), with ranges selected to illustrate the type of variability
introduced by each parameter. For each parameter, five Grice
representations were derived, corresponding to the five chosen
values of that parameter, while the other parameters were held to
their central values (i.e., to the third entry in each line of Table 3,
shown in boldface).

Figure 5 displays the resulting Grice representations. Each panel
shows the results of varying a different parameter, with curves
colored light gray through black corresponding to the first through
fifth entries in each row of Table 3. Solid curves are for the
nominally correct response (r � 2), and dashed curves are for the
incorrect response (r � 1). The third-darkest curves in all plots are
the same, corresponding to the third value for all four parameters.

These results reveal a great deal of flexibility in the LBA model,
even with its parametric assumptions retained (see Table 4 for
summary). Variation in mean growth rates produces opposite
effects on the two Grice response processes, speeding one while
slowing the other (Figure 5C). Variation in b or A has the effect of
speeding or slowing both Grice processes together (Figures 5A and
5B). Thus, variation in v2 together with variation in b or A provides
the degrees of freedom to independently manipulate the growth
rates of both Grice processes (essentially by manipulating their
difference and their mean).

Moreover, b and A have different effects on the shapes of the
Grice processes. The effect of A is approximately temporally
uniform, shifting the Grice processes earlier in time but preserving
their shape. The effect of b is temporally nonuniform, being
greater at larger values of t. Combining variation in b and A thus
allows selective control of only the early or late portions of the
Grice processes, as shown in Figures 6A and 6B, respectively.
Table 5 shows the parameter values used in generating Figure 6. In
both panels, b and A were jointly varied through the five pairs of
values in Table 5, while v2 and � were fixed at their third
(boldface) values in Table 3.

Variation in � produces somewhat more complex effects in the
Grice response processes (Figure 5D). Smaller values of � delay
their initial rise from zero but make them steeper thereafter. This
result is sensible, because decreased variance in slopes of the
LBA’s response processes narrows the resultant RT distribution,
reducing the proportions of both fast and slow responses.

In conclusion, variation of the LBA’s parameters reveals the
constraints on its Grice representation. These constraints arise
from its distributional assumptions regarding growth rates and
starting points (without which it would have no constraints). Spe-
cifically, the response processes of the standard LBA’s Grice
representation (using independent unit-exponentially distributed
thresholds) are always sigmoid in shape, consisting of an initial
period of negligible growth, an effective onset point where they

10 As the sources of systematic variation in the parameter values are
immaterial in the present analysis, we suppress superscripts for stimuli and
conditions in this and the following section.

11 Brown and Heathcote’s motivation for this constraint is that it elim-
inates the degenerate degree of freedom in the model’s parameters that
arises from the arbitrary scaling of the response processes and threshold.
As noted above for the diffusion model, this strategy mistakenly limits the
generality of the LBA when parameters are yoked across multiple exper-
imental conditions (Donkin et al., 2009).
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rise from zero, and a final phase of concavity (deceleration). The
LBA’s parameters all have straightforward qualitative interpreta-
tions within this framework, allowing near-complete flexibility of
the sigmoid pattern. The effective time of onset and initial growth
rate are controlled by A and b, the differential growth rate between

the two responses is controlled by v, and the change in growth rate
over time (concavity) is controlled by �.

Grice Representation for the Diffusion Model

To obtain Grice representations for the diffusion model, its
predicted R&T distribution and joint hazard function were com-
puted using numerical integration (see Appendix B) and then
translated to Grice response processes using Equation 24. As with
the LBA, each of the diffusion model’s parameters was systemat-
ically varied to obtain a series of Grice representations. Although
the diffusion rate is traditionally held fixed as a scaling parameter,
it was included in this analysis to understand its unique contribu-
tion (equivalent to simultaneously varying a, z�, �z, v, and �). Table
6 shows the parameter values used. Each parameter was varied
through three values, with the other parameters fixed at their
middle values. The results are shown in Figure 7.

As with the LBA, the effects of the diffusion model’s parame-
ters on its Grice representation reveal a great deal of flexibility,
even with its parametric assumptions retained (see Table 4). The
mean growth rate (v) provides flexibility in the difference in slopes

Table 3
Values of Linear Ballistic Accumulation Model Parameters
Used in Investigation of Individual Parameter Effects on
Grice Representation

Parameter Values

b 0.4 0.6 0.8 1.0 1.2
A 0 0.2 0.4 0.6 0.8
v2 0.6 0.7 0.8 0.9 1.0
� 0.1 0.2 0.3 0.4 0.5

Note. For each parameter, model predictions were derived for all five
values, while holding the other three parameters to the values shown in
boldface (e.g., each of the five values of b was combined with A � .4, v2 �
.8, and � � .3). Mean growth rates were constrained by v1 
 v2 � 1.
Nondecision time was held to zero throughout.
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Figure 5. Grice representations of linear ballistic accumulation model under variation of individual parameters.
Light through dark curves correspond to first through fifth entries of each row of Table 3. Each curve shows a
Grice response process (R) as a function of time (t). Solid � correct or modal response (r � 2); dashed �
incorrect or nonmodal response (r � 1).
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of the two Grice response processes, whereas the boundary sepa-
ration (a) enables the slopes of both processes to change together.
Therefore, as with the LBA, joint variation in v and a enables
independent variation of the slopes of both Grice processes. Fur-
thermore, the diffusion model can effect these changes in multiple
ways. The standard deviation of growth rates (�) has primarily the
same effect as does v, although at longer timescales � can be seen
to affect the processes’ curvature as it does in the LBA. The decay
parameter of the OU model (�) and the diffusion rate (�) both have
primarily the same effect as does a.

The variability in nondecision time (�t) primarily affects only
the initial part of the Grice processes, enabling them to depart from
zero suddenly or more gradually. This finding is consistent with
previous conclusions that nondecision variability can be necessary
for fitting the leading edge of empirical distributions (Ratcliff,
Gomez, McKoon, 2004) but that it has little effect on later portions
of those distributions (Ratcliff & Tuerlinckx, 2002). The variabil-
ity in starting points of the diffusion process (�z) has little effect in
the range of values found in fitting empirical data (compare Table
6 with Table 7 below), but at higher values it affects the curvature
of the Grice processes, in opposite directions for the two re-
sponses.

In conclusion, the diffusion model’s parameters all have rela-
tively simple interpretations within the Grice framework. Further-
more, the parameters appear to provide near-complete flexibility in
determining the slope of each Grice process, their (common) time
of departure from zero, the smoothness of that transition, and their
differential curvature.

Fits to Empirical Data

The Grice representation for an empirical data set can be derived
similarly as for model predictions, to obtain a family of response
processes under which the Grice model perfectly reproduces the
R&T distribution of the data. The derivation involves a minor
modification to account for the discreteness of the RT distribution
from a finite set of trials, as explained in Appendix D. The Grice
representation of the data can be compared to Grice representa-
tions of models used to fit those data, to yield insight into what
aspects of the data the models capture, and how.

This approach is applied to Experiment 2 of Ratcliff et al.
(2001), in which subjects viewed a pair of dots on each trial and
classified their distance as “small” or “large” by one of two
keypresses. Dot separation took on 32 different values. Feedback
was probabilistic, such that larger separations were more likely to
be followed by reinforcement of the “large” response. Following
Ratcliff et al., data were collapsed among stimulus levels with
similar response proportions and mean RTs, as well as over the
symmetry between responses (e.g., “large” responses to the largest
dot separations were pooled with “small” responses to the smallest
separations), yielding four stimulus difficulty levels for modeling.
Although feedback was probabilistic, we refer to the modal and
nonmodal responses for each stimulus level as correct and incor-
rect, respectively. Finally, there were two instruction conditions,
emphasizing speed and accuracy, which alternated between
blocks.

Ratcliff and Smith (2004) fit three diffusion models to the data:
the Wiener model (� � 0) and two OU models defined by � � 4
and � � 8. The models were fit to the data pooled across subjects,
using the following procedure. For each condition and stimulus
level, the response probabilities and the .1, .3, .5, .7, and .9

Table 4
Interpretations of LBA and Diffusion Model Parameters Within
Grice Framework

LBA
parameter

Diffusion
parameter Grice interpretation

b a Growth rate of both processes
A Growth rate of both processes

�z Curvature of response processes
v2 v Differential growth rate between processes
� � Curvature of response processes
t0 Ter Onset time of response processes

�t Abruptness of onset
� Growth rate of both processes
� Growth rate of both processes

Note. LBA � linear ballistic accumulation.
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Figure 6. Grice representations of linear ballistic accumulation model obtained from two different forms of
simultaneous variation of b and A. Light through dark curves correspond to first through fifth columns of Table
5. Solid � correct or modal response (r � 2); dashed � incorrect or nonmodal response (r � 1).
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quantiles of the conditional RT distribution for each response were
calculated for each subject and then averaged across subjects. The
mean quantiles were used as cutoffs to divide the range of possible
RTs into 6 bins per response, for a total of 12 possible outcomes
on each trial. The model’s predicted probabilities for these 12
outcomes were compared to the empirical frequencies to define a
modified chi-square statistic reflecting goodness of fit, which was
minimized in parameter estimation. Table 7 presents the best-
fitting parameters for all three diffusion models, as obtained by
Ratcliff and Smith. We applied the same fitting procedure to the
LBA model, with best-fitting parameters shown in Table 8.

To derive Grice representations for the data, data were pooled
across subjects by averaging individual subjects’ response proba-
bilities and conditional RT quantiles, as was done in fitting the
models. Because derivation of Grice representations requires full
(quasi-continuous) RT distributions, we used a richer set of quan-
tile probabilities, ranging from .0001 to 1 in steps of .0001. Each
of the corresponding 10,000 quantiles was computed separately for
each subject and response, and then averaged across subjects. The
resulting mean quantiles were then converted back to a pooled
conditional RT distribution for each response. The conditional
distribution for each response was scaled by the corresponding
response rate (averaged across subjects) to produce a pooled joint
R&T distribution. This joint R&T distribution has the properties
that (a) the marginal probability of each response equals the
average response rate across subjects, and (b) every quantile of the
conditional RT distribution for each response equals the average
quantile across subjects. This procedure was performed separately
for each combination of instruction condition and stimulus level.

Figure 8 shows the Grice representations of the data and all four
models, in the speed condition. Figure 9 shows the corresponding
results from the accuracy condition. The sparsity in the tails of the
empirical RT distributions makes the response processes exceed-
ingly noisy beyond 1 s (speed condition) or 2 s (accuracy condi-
tion). Therefore, all graphs are terminated at these times. The
models differ in their predictions at longer RTs, for example with
the OU model exhibiting an eventual crossover between correct
and incorrect response processes (not shown), but these differences
are not considered further because the data are insufficient to
distinguish among them. Note that due to the universality of Grice
representations the curves shown in Figures 8A and 9A should be
viewed as data rather than as theoretical fits to data, on a par with
representing the data in the form of empirical distribution func-
tions, quantile functions, hazard functions, etc.

In the speed condition, the Grice response processes for the
diffusion models are all nearly linear in the range of the data,
starting from the time they depart from zero. The only aspects of
the Grice-represented data the diffusion models capture are the
departure points and the slopes. The mean-nondecision parameter
(Ter) allows the model to match any departure point, provided it is
the same for all responses in all stimulus conditions (a constraint
the data satisfy). As observed in the previous section, the diffusion
model’s parameters allow it to produce Grice processes of any
slopes. The first selective influence assumption, that only the mean
growth rate can vary across stimulus levels, implies that the sets of
Grice processes for the two responses must be approximately
symmetric about some intermediate trajectory for each condition.
This prediction is supported by the data. Therefore, the symmetric-
trajectory and common-departure properties seem to be the only
aspects of the data that substantively support the diffusion model.

The fits of the LBA model to the speed condition show less-
linear Grice processes, with an overall negative acceleration. This
prediction only partially holds in the data, where the Grice pro-
cesses are concave for the correct response but somewhat convex
(positively accelerated) for the incorrect response. The excessive
concavity of the LBA’s predictions results in its significantly
overestimating the .9 RT quantiles for both responses (not shown).
The universality property implies the LBA could perfectly match
the data if allowed non-Gaussian growth-rate distributions, but
these results show how the Gaussian assumption constrains the
model’s predictions. Other than this constraint, the LBA matches
the data in the same manner as does the diffusion model. The Grice
processes’ departure point, overall average slope, and difference
across stimulus values in relative slopes for the two responses are
all trivially reproduced. The only necessary predictions of the LBA
model that are supported by the data seem to be the symmetric-
trajectory and common-departure properties.

In the accuracy condition, the empirical Grice processes are
more nonlinear, concave for the correct response and somewhat
convex for the incorrect response. The diffusion model reproduces
this curvature, especially with lower values of �, as does the LBA.
In all other respects, the same analysis holds as for the speed
condition.

Finally, the second selective influence assumption of the diffu-
sion and LBA models, that only the threshold and (in the LBA)
start-point variability can vary across instruction conditions, man-

Table 5
Values of Linear Ballistic Accumulation Model Parameters Used
in Joint Variation of Threshold and Start-Point Variability

Parameter Values

Figure 6A
b 0.48 0.56 0.64 0.72 0.8
A 0 0.2 0.4 0.6 0.8

Figure 6B
b 0.4 0.6 0.8 1.0 1.2
A 0.4 0.6 0.8 1.0 1.2

Note. Both parameters were varied simultaneously through the five pairs
of values (i.e., columns) shown for each figure. Other model parameters
were fixed at their boldface values in Table 3.

Table 6
Values of Diffusion Model Parameters Used in Investigation of
Individual Parameter Effects on Grice Representation

Parameter Values

� 0 4 8
a 0.05 0.1 0.15
� 0.01 0.1 0.2
v 0 0.15 0.3
� 0 0.1 0.2
�z 0 0.03 0.09
�t 0 0.2 0.6

Note. For each parameter, model predictions were derived for all three
values, while holding the other six parameters to the values shown in
boldface. In all cases, the mean starting point, z̄, was held to a/2, and mean
nondecision time, Ter, was set to 0.3 s.
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Figure 7. Grice representations of diffusion model under variation of individual parameters. Light through dark
curves correspond to the first through third entries in Table 6. Solid curves � correct or modal response; dashed
curves � incorrect or nonmodal response.
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ifests as a constraint linking their Grice representations across
conditions. Specifically, the overall average growth rates of the
Grice processes differ between conditions, but the differences in
growth rates between responses and across stimulus levels do not.
This prediction is consistent with the data (note that the timescales
differ between Figures 8 and 9).

In conclusion, the Grice representations offer a new perspective
on the predictive constraints in the diffusion and LBA models
arising from their parametric and selective influence assumptions.
They show that the flexibility identified in the previous two
subsections enables the diffusion and LBA models to match most
aspects of the data in a post hoc manner. That is, had these features
taken on different values, the models could have matched them as
well, by using different parameter values. There are four aspects of
the data, when expressed as Grice representations, that are neces-
sary predictions of the models: (a) The shapes of the Grice re-
sponse processes are characterized by initially negligible growth,
an effective onset point, and a final phase of roughly constant
concavity or convexity. (b) The effective onset points are constant
across responses and stimulus levels. (c) Variation in stimulus
difficulty has opposite and approximately equal effects on the
growth rates of the Grice processes for the two responses. (d)
Manipulation of subjects’ speed–accuracy emphasis affects the
growth rates of the Grice processes approximately uniformly
across responses and stimulus levels. The first of these predictions
is the only one that appears related to the models’ parametric
distributional assumptions. The second prediction is primarily due
to the assumption that the nondecision component of the models is
independent of the response and of stimulus and instruction ma-
nipulations. The last two predictions arise from the selective in-
fluence assumptions. Critically, none of these predictions is
closely tied to the fundamental architectures of the models. They
are just as naturally interpretable when expressed as assumptions
in the Grice framework as when expressed in the LBA and diffu-
sion frameworks.

Discussion

Whenever a cognitive model provides a good account of em-
pirical data, it is critical to understand which of its assumptions are

responsible for its predictive success. Such understanding is im-
portant for theoretical progress and for generalizing to other par-
adigms or domains. Moreover, the assumptions of most formal
models can be roughly divided into ones corresponding to theo-
retical principles the model is meant to embody, and technical
details that are necessary to generate quantitative predictions but
are chosen without theoretical consideration and can be modified
or dispensed with as need arises. Issues of model flexibility and
mimicry are a challenge in any domain, and often the most
powerful solution is a nonparametric approach that can be applied
to whole model families, to determine the implications of their
theoretical assumptions taken alone (e.g., Townsend & Wenger,
2004). For an empirical test of a model to constitute a test of its
theoretical principles, it is important to know that those principles
provide the main constraint on the model’s predictions and that the
choices of technical assumptions are largely inconsequential.

The present work shows that for currently influential models of
choice RT, the situation is reversed, in that the predictions are
driven entirely by technical assumptions and (to an as yet unknown
extent) by the second selective influence assumption. Aside from
the second selective influence assumption (which we have argued
is ill-motivated), the theoretical principles of both the diffusion and
ballistic accumulation frameworks are unfalsifiable, because the
inclusion of random growth-rate variability allows any conceiv-
able pattern of RT distributions to be matched. This result is
similar to Dzhafarov’s (1993) result for the Grice modeling frame-
work (Grice, 1968), that the theoretical assumption of determinis-
tic processes racing to stochastic thresholds is unfalsifiable and
that predictive constraints come only from technical assumptions
about the forms of the response processes under specific choices of
threshold distributions.

The universality results thus impose a significant limitation on
what can be inferred from existing research about psychological
processes of speeded decisions. Although the diffusion and LBA
models have been highly successful in fitting data from a variety
of task domains (e.g., Brown & Heathcote, 2008; Ratcliff & Smith,
2004), this success does not imply any support for the theoretical
or structural assumptions of these models. For example, the fact
that the universality results hold without diffusion, decay, start-

Table 7
Diffusion Model Parameters Estimated From Experiment 2 of Ratcliff et al. (2001)

Model aspeed aacc v1 v2 v3 v4 � �z Ter �t

Wiener .0821 .1440 .0391 .1320 .1944 .3208 .1485 .0324 .3109 .10
OU (� � 4) .0700 .1128 .0399 .1349 .1983 .3312 .1417 .0111 .3302 .15
OU (� � 8) .0687 .0975 .0342 .1150 .1702 .2772 .0845 .0100 .3185 .10

Note. OU � Ornstein-Uhlenbeck. Fits taken from Ratcliff and Smith (2004). Stimulus discriminability levels range from 1 (difficult) to 4 (easy).
Superscripts “speed” and “acc” refer to speed instructions and accuracy instructions, respectively.

Table 8
Linear Ballistic Accumulation Model Parameters Estimated From Experiment 2 of Ratcliff et al. (2001)

bspeed Aspeed bacc Aacc v2
1 v2

2 v2
3 v2

4 � t0

.341 .228 .561 .395 .560 .645 .748 .895 .347 .121

Note. v2
s indicates mean growth rate for correct response, with v1

s � 1 � v2
s. Stimulus discriminability levels range from s � 1 (difficult) to s � 4 (easy).

Superscripts “speed” and “acc” refer to speed instructions and accuracy instructions, respectively.
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point variability, or nondecision variability implies that these com-
ponents are superfluous if the growth-rate distributions are uncon-
strained. All of these mechanisms have been postulated as
necessary theoretical principles, yet mathematically none of them
is needed to fit data. Any version of the model with these other

components included is equivalent to a model without them, with
appropriately altered growth-rate distributions.

Setting aside the techical assumption of Gaussian growth-rate dis-
tributions, the sole link remaining between theory and prediction is the
second selective influence assumption. With this assumption, the
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Figure 8. Grice representations derived from data and model fits for speed condition of Experiment 2 of
Ratcliff et al. (2001). A. Empirical data. B. Linear ballistic accumulation model. C. Wiener model (� � 0). D.
Ornstein-Uhlenbeck model (� � 4). E. Ornstein-Uhlenbeck model (� � 8). Light through dark curves indicate
hardest through easiest stimulus levels. Solid curves � modal response; dashed curves � nonmodal response.
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models are falsifiable, and without it they are not. This assumption has
certainly been posed in the literature as a theoretical principle, not an
arbitrary technical detail, and thus one might claim that our results are
irrelevant to models that hold this principle. There are several prob-
lems with such a position. First, as we argued in the Selective Influ-
ence section, the second selective influence assumption is not as

compelling as the first selective influence assumption (which does not
impart predictive constraints). There is no a priori reason that stimulus
processing cannot vary across cognitive states, and indeed there are
prominent models that assume it does (Nosofsky & Palmeri, 1997;
Roe et al., 2001). Second, selective influence has not heretofore been
attributed anything close to the lynchpin role our results imply would
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Figure 9. Grice representations derived from data and model fits for accuracy condition of Experiment 2 of
Ratcliff et al. (2001). A. Empirical data. B. Linear ballistic accumulation model. C. Wiener model (� � 0). D.
Ornstein-Uhlenbeck model (� � 4). E. Ornstein-Uhlenbeck model (� � 8). Light through dark curves indicate
hardest through easiest stimulus levels. Solid curves � modal response; dashed curves � nonmodal response.
Note the difference in the timescale compared with Figure 8.
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be needed to save the models. It should be useful to researchers
relying on these models to learn that their explanatory value hinges
fully on this one assumption.

Third, although selective influence imparts predictive con-
straints, the strength and nature of those constraints are open
questions. It seems likely that the models’ choices of parametric
distributions (i.e., the Gaussian and uniform assumptions) are
responsible for much if not the bulk of the explanatory work in
past fits to empirical data. To truly defend selective influence as a
standalone theory of choice RT, one would have to derive the
logical consequences of the second selective influence assumption
in the absence of any parametric assumptions (consequences that
presumably would differ across architectures, such as the gDM,
gLBA, or Grice framework). Unfortunately, most modern mathe-
matical modeling does not take this type of analytic approach.
Instead, models are constructed as conjunctions of many assump-
tions, making it difficult to separate their logical consequences.
This practice puts the field in a position where we do not always
know why a model does or does not succeed empirically, and
consequently we often have little guidance on what psychological
conclusions can be drawn from comparisons of models to data.

A related argument against the present results might be that the
diffusion and LBA models both assume that growth-rate distributions
are of the same parametric form across stimuli, responses, and con-
ditions. Mathematically, this statement is meaningless. Any finite set
of distribution functions can be characterized as instances of some
parametric family, that is, made to be of the same “parametric form.”
In fact, any finite set of parametric families of functions can be united
into a single parametric family. Normal distributions and Poisson
distributions can be viewed as two parametric classes, but they can
also be viewed as belonging to the exponential family of distributions.
Linear and cubic functions are members of the polynomial family. To
take an unconventional example, the families of functions A sin ax
and Bx� are subsets of the family Cx� (sin ax)�, provided � � 0 and
� � 0 are not excluded. Therefore the relevant question is not why a
single parametric form is possible, but why the particular parametric
family that has dominated past work (viz., the Gaussian) has been so
empirically successful.

Empirical success by a falsifiable model implies that it is capturing
some regularity in the data, and hence in cognitive processing, but it
is not clear in the current case what that regularity is. One possibility
is that the Gaussian distribution is psychologically correct, but this is
doubtful for three reasons. First, there is no clear reason to expect a
Gaussian. Whereas the Gaussian distribution of within-trial variability
emerging from a diffusion process can be explained by the summation
of many independent neural events (via the central limit theorem),
there is no obvious candidate for a between-trial analog—that is, a
large number of independent and identically distributed between-trial
variables that sum to determine the drift rate. Second, Ratcliff (2013)
and Donkin and Little (2013) have recently shown through simulation
that the diffusion and LBA models yield similar predictions if the
Gaussian drift distribution is replaced by a uniform or beta distribu-
tion, suggesting that any of a range of distributions might be adequate.
Further work along these lines might be informative in determining
what aspects of a growth distribution are needed for good fits to data
(e.g., symmetry or thin tails). However, a third caveat is that the
empirical success of a distribution will generally depend on the model
architecture. For example, the standard LBA can be translated to an
equivalent gLBA model without start-point variability, and this new

model will have quite different growth distributions. In initial deriva-
tions not reported here, we have found these distributions to be
positively skewed with heavier tails. Heathcote and Love (2012) have
recently explored a similar model and found that a lognormal growth
distribution gives good fits to data. Therefore one needs to consider
both distributional and structural assumptions jointly.

When a modeling framework is universal, it is best thought of as
a language for expressing models. Empirical tests of a model are
tests of falsifiable assumptions stated in that language, not of the
framework itself. Nevertheless, a modeling language can be re-
garded as more useful or less useful depending on the interpret-
ability of the assumptions needed to give good fits of data. Con-
straining assumptions will take different forms when translated
between different languages, some perhaps more transparent or
suggestive than others. Thus, a relevant question is which frame-
work admits models that can explain the data in a way that is both
mathematically convenient (e.g., using few free parameters and
allowing for analytic solutions) and also easily interpretable (e.g.,
in terms of which parameter controls which theoretical construct
and reflects which observable property of RT distributions).

Although the aim of this article is not to advocate for the Grice
framework as a language for modeling speeded choice, the results
of the Translating the LBA and Diffusion Models Into the Grice
Framework section suggest it fares well on both of the above
criteria. First, the Grice representation of the empirical data from
Ratcliff et al. (2001) suggested that human behavior can be well
matched using fairly simple Grice response processes. In terms of
free parameters, the formal translation between modeling lan-
guages implies the Grice processes require no more than the
number of free parameters in the model (i.e., diffusion or LBA)
from which the translation was derived. However, consideration of
the qualitative form of the Grice representations derived here
suggests a simpler parameterization might be possible: One might
need only to specify an onset (i.e., time of departure from zero),
slope for each response, and possibly quadratic terms for curva-
ture. These assumptions are mathematically simpler than the con-
junction of the assumptions of a Gaussian distribution, two uni-
form distributions, Brownian motion, and decay. Moreover, one
might argue that deterministic processes paired with random
thresholds are inherently simpler than stochastic processes, be-
cause a stochastic process always involves some dynamics in time
and one or more random variables at each time point, but in
addition one has to specify (under certain regularity assumptions)
a joint distribution of these random variables across every finite set
of time points. Second, the unique effects of stimulus level and of
speed–accuracy manipulations have natural interpretations in the
Grice framework. Increasing stimulus intensity can be assumed to
increase the growth rate of the correct response process and to
decrease the growth rate of the incorrect process. Shifting the
subject’s emphasis toward speed can be assumed to increase the
growth rates of all processes. Both of these assumptions seem no
less theoretically motivated than assumptions regarding growth
rates and decision thresholds in the other frameworks.

Finally, it is important to note that the present results apply to
models that make predictions only for choice and RT. The postu-
lated mechanisms within these models (viz., response processes
and decision thresholds) are treated only as mathematical entities
that determine predictions for these observable variables. Other
measures have been used to investigate speeded decision making,
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such as confidence ratings (Ratcliff & Starns, 2009), motor trajec-
tories (Spivey, Grosjean, & Knoblich, 2005), eye movements
(Krajbich, Armel, & Rangel, 2010), and neural recordings (Roit-
man & Shadlen, 2002), and the identifiability problems raised here
might be reduced by requiring a model to predict these variables in
addition to choice and RT. Such an extension would require
additional assumptions about how the internal mathematical con-
structs of the model map onto physical observations. For example,
a large body of research on monkeys’ saccade responses to visual
motion has led to the proposal that eye movements are triggered by
threshold-crossing of activity in the lateral intraparietal area, which
follows a diffusion process by temporally integrating upstream
activity in the middle temporal visual area (Mazurek, Roitman,
Ditterich, & Shadlen, 2003). Although there have been empirical
challenges to this theory (e.g., Filimon, Philiastides, Nelson,
Kloosterman, & Heekeren, 2013), it exemplifies how, by commit-
ting to physical interpretations of otherwise abstract model con-
structs, one can potentially leverage neural and behavioral data to
make better progress than is possible from either alone.

However, in taking an implementational stance on otherwise
algorithmic-level models (see Marr, 1982), one should be cautioned
against automatically adopting naturalistic analogies prompted by
terminological conventions such as calling some theoretical constructs
“processes” and others “thresholds.” For example, the finding that RT
correlates better with the growth rate of neural activity than with its
final level (Hanes & Schall, 1996) might suggest that neural interpre-
tations are more compatible with variability residing in accumulation
processes than in thresholds, but Grice response processes need not be
directly identified with physical activations of neurons. Because the
Grice framework is situated at an algorithmic level of description, it
can be mapped onto neural processing in many alternative ways, some
of which might be found to provide a natural correspondence. Recall,
as a simple example, the Grice-equivalent frameworks of Theorems 5
and 6. The “deterministic response processes” and “random thresh-
olds” in the Grice model both correspond to aspects of the response
processes in these alternative models. Therefore, if the response
processes in either alternative model are identified with neural acti-
vation, then the Grice framework can be seen as compatible with
stochastic neural activity developing toward a fixed neural threshold.

Conclusions

A long history of experimental research in speeded choice has
produced a rich body of empirical regularities regarding choice
probability, RT distributions, and their dependence on various
factors. Mathematical modeling has produced models that often
yield impressive fits to these data with relatively few free param-
eters. Nevertheless, the theoretical implications of these modeling
results are far less certain than they have been made out to be. As
we have shown here, the models’ predictions derive not from their
structural assumptions but from technical aspects that have been
considered irrelevant details. Understanding the predictive con-
straints and theoretical implications of these technical assump-
tions, together with those of the second selective influence as-
sumption, is thus an important goal. The methods introduced here
for translating falsifiable models between universal modeling lan-
guages may be useful toward that end.
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Appendix A

Proofs of Theorems

Recall the definition of joint hazard function in Equation 5.
Analogously, given a random variable T with density function f(t)
and (cumulative) distribution function F(t), the hazard function is
defined as

h(t) ��
f(t)

1 � F(t)
if F(t) � 1

0 if F(t) � 1.

(A1)

Theorem 3 (Universality of Independent Race Models)

We begin by observing that the marginal hazard function for
reaction time (RT) is related to the joint hazard function by

hs,c( · , t) �
gs,c( · , t)

1 � Gs,c( · , t)
�

�
r

gs,c(r, t)

1 � Gs,c( · , t)
� �

r
hs,c(r, t) (A2)

with hs,c(·,t) � hs,c(r,t) � 0 if tmax
s,c � t. It follows that, for all t,

Gs,c( · , t) � 1 � exp��	0

t
hs,c( · , �) d��

� 1 � 

r

exp��	0

t
hs,c(r, �) d��,

(A3)

and

gs,c(r, t) � hs,c(r, t)(1 � Gs,c( · , t))

� hs,c(r, t)

i

exp ��	0

t
hs,c(i, �) d��.

(A4)

Let Fr
s,c(t) be the (cumulative) distribution functions for Tr

s,c

according to the model M, and let fr
s,c(t) and �r

s,c(t) be the corre-
sponding probability density and hazard functions, respectively.
The probability density of process r winning the race at moment t
is given by


s,c(r, t) � fr
s,c(t) 


i�r
(1 � Fi

s,c(t)) � �r
s,c(t)


i
(1 � Fi

s,c(t)).

(A5)

We have to prove that 
s,c(t) � gs,c(t) if and only if

Fr
s,c(t) � 1 � exp��	0

t
hs,c(r, �) d�� (A6)

for t � tmax
s,c .

First, assume Equation A6 holds for t � tmax
s,c . From Equation A4,

if 	0
t hs,c�i,��d� � � for any i and t, then gs,c(r,t=) � 0 for all r and

all t= � t. Therefore 	0
t hs,c�i,��d� must be finite for all t � tmax

s,c .
Equation A6 then implies that for t � tmax

s,c , Fr
s,c(t) � 1 and

�r
s,c(t) �

dFr
s,c(t) ⁄ dt

1 � Fr
s,c(t)

� hs,c(r, t). (A7)

Using Equation A6 in Equation A5 and substituting hs,c(r,t) for
�r

s,c(t),


s,c(r, t) � hs,c(r, t)

i

exp��	0

t
hs,c(i, �) d��. (A8)

By Equation A4, this means


s,c(r, t) � gs,c(r, t). (A9)

To prove the converse, assume 
s,c(r,t) � gs,c(r,t), and substitute
gs,c for 
s,c in Equation A5 to obtain

gs,c(r, t) � �r
s,c(t)


i
(1 � Fi

s,c(t)). (A10)

Since by assumption the model M is an independent race repre-
sentation for Gs,c, Fi

s,c(t) � 1 for t � tmax
s,c and



i

(1 � Fi
s,c(t)) � 1 � Gs,c( · , t). (A11)

Therefore for t � tmax
s,c ,

�r
s,c(t) �

gs,c(r, t)

1 � Gs,c( · , t)
� hs,c(r, t), (A12)

and Equation A6 follows.

Theorem 4 (Incomplete Termination Times)

In this theorem s and c are fixed, so they are omitted from the
notation. We begin by constructing an independent race model

M � ((R1(t), �1), . . . , (Rn(t), �n))

whose first-passage times Tr are incomplete for r � {i1, . . . , im}
and complete otherwise (0 � m � n). Let all �r be independent and
uniformly distributed between 0 and 1, and let

Rr(t) � pr · (1 � e�t), (A13)

where pr � 1 if r � {i1, . . . , im} and pr � 1 otherwise. The
model’s first-passage distributions are then given by

Pr[Tr � t] � Rr(t). (A14)

(Appendices continue)
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For r � {i1, . . . , im}, Pr[Tr � t] increases to limt¡�Rr(t) � pr �
1; that is, the first-passage times are incomplete. For r �
{i1, . . . , im}, Pr[Tr � t] increases to 1, reaching it asymptotically
at t � �. This completes the construction of M. Denote by G(r,t)
the response-and-time (R&T) distribution generated by M, and by
h(r,t) the associated hazard function. Clearly, tmax � � here.

Assume M= is any other independent race model generating
G(r,t), and let Tr= be the random variables for its first-passage
times. From Theorem 3, we have for all r and t

Pr[Tr
′ � t] � 1 � exp��	0

t
h(r, �)d�� � Pr[Tr � t]. (A15)

Therefore the first-passage times for M= are incomplete for r �
{i1, . . . , im} and complete for r � {i1, . . . , im}, as claimed.

Theorem 7 (Universality of General LBA)

Let Fr
s,c(t) be the (cumulative) distribution functions for first-

passage times defined by Equation 11. From Theorem 3, the
general linear ballistic accumulation (gLBA) will reproduce
Gs,c(r,t) if it has first-passage distributions equal to Fr

s,c(t). Under
the assumptions of Theorem 7, the first-passage times for the
gLBA are given by Equation 18. Define the gLBA’s growth-rate
distribution functions as

Pr[kr
s,c � k] � �1 � Fr

s,c�< b

k
� t0=� if k 	 0

1 � limt¡�Fr
s,c(t) if k � 0,

(A16)

extending them below k � 0 arbitrarily. (The <·= notation indicates
the left limit: F�<t=� � sup� � t F���.) Then the first-passage dis-
tributions for any t � t0 are equal to

Pr[Tr
s,c � t] � Pr� b

kr
s,c � t0 � t and kr

s,c 	 0�
� Pr�kr

s,c �
b

t � t0
�� Fr

s,c(t).

(A17)

Theorem 8 (Universal Ballistic Models With Random
Growth Rates)

As with Theorem 7, we need only to show that the model can
generate any given set of first-passage distributions, Fr

s,c(t). The
first-passage time for response r here is equal to the value of t for
which kr

s,cLr (t) � b. Therefore,

Tr
s,c ��Lr

�1� b

kr
s,c� if kr

s,c 	
b

er

� if kr
s,c �

b

er
,

(A18)

where er � limt¡�Lr(t). If Lr(t) is unbounded we put er � � and
b/er � 0. Let the distribution functions for growth rates kr

s,c be

Pr[kr
s,c � k] ��1 � Fr

s,c�<Lr
�1�b

k�=� if k 	
b

er

1 � limt¡�Fr
s,c(t) if k �

b

er
,

(A19)

arbitrarily extended below k �
b

er
. The first-passage distributions

are then given by

Pr[Tr
s,c � t] � Pr�Lr

�1� b

kr
s,c�� t and kr

s,c 	
b

er
�

� Pr�kr
s,c �

b

Lr(t)
�� Fr

s,c(t).

(A20)

Theorem 9 (Universal Ballistic Models With Random
Starting Points)

As with the previous two proofs, we need only to show that the
model can generate any given set of first-passage distributions,
Fr

s,c(t). The first-passage time here is

Tr
s,c ��Lr

�1(b � zr
s,c) if zr

s,c 	 b � er

� if zr
s,c � b � er,

(A21)

where er � limt¡�Lr(t). If Lr(t) is unbounded, b � er is replaced
with ��. Let the start-point distribution functions be

Pr�zr
s,c � z� ��1 � Fr

s,c�<Lr
�1(b � z)=� if z 	 b � er

1 � limt¡�Fr
s,c(t) if z � b � er,

(A22)

extended below z � br � er arbitrarily. Then the first-passage time
distributions are given by

Pr[Tr
s,c � t] � Pr�Lr

�1(b � zr
s,c) � t and zr

s,c 	 b � er�
� Pr[zr

s,c � b � Lr(t)] � Fr
s,c(t).

(A23)

Remark. Theorems 8 and 9 can be easily generalized in
several respects: The continuity and nonnegativity constraints
on Lr(t) can be relaxed. One can allow the thresholds to have
different values for different responses. All quantities being
fixed at arbitrarily chosen values, by the very arbitrariness of
their choice, can be made arbitrarily dependent on c. For
instance, b1, . . . , bn in Theorem 9 can be made b1

c, . . . , bn
c with

the stipulation limt¡�Lr(t) � supcbr
c.

Theorem 10 (Universality of General Wiener
Diffusion Model)

Given any family of R&T distributions, Gs,c(r,t) for r � 1, 2,
define the growth-rate distribution for each condition by

(Appendices continue)
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Pr�ks,c � k� ��
Gs,c�1, Ter �

a

2k� if k � 0

limt¡�Gs,c(1, t) if k � 0

1 � Gs,c�2,<Ter �
a

2k=� if k 	 0.

(A24)

Using Equations 20 and 21, we have for any t � Ter:

Pr[r � 1 and RT � t] � Pr�ks,c � 0 and Ter �
a

2ks,c � t�
� Pr�ks,c � �

a

2(t � Ter)
�� Gs,c(1, t),

(A25)

and

Pr[r � 2 and RT � t] � Pr�ks,c 	 0 and Ter �
a

2ks,c � t�
� Pr�ks,c �

a

2(t � Ter)
�� Gs,c(2, t).

(A26)

Remark. The theorem is proved under the assumption that
Gs,c is globally complete (i.e., a response is given on every trial
with probability 1). Then Pr[ks,c � 0] � 1 � limt¡�Gs,c(·, t) � 0.
If global incompleteness is allowed, then the expression for
Pr[ks,c � 0] in Equation A24 should be changed to 1�
limt¡�Gs,c(2, t), with no further consequences.

Theorem 11 (Universality of General
Ornstein-Uhlenbeck [OU] Model)

Under the simplifying assumptions of the theorem, the response
process for the OU model is given by

Rs,c(t) �
a

2
�

ks,c

�
(1 � e��(t�Ter)). (A27)

The response and RT are given by

r ��
1 if ks,c � �

�a

2

2 if ks,c 	
�a

2

undefined if �
�a

2
� ks,c �

�a

2

(A28)

and

RT � �Ter �
1

�
log�1 �

�a

2�ks,c�� if �ks,c� 	
�a

2

� if �ks,c� �
�a

2
.

(A29)

Given any family of R&T distributions Gs,c(r,t), define the
distribution functions for growth rates as

Pr�ks,c � k�

��Gs,c�1, Ter �
1

�
log�1 �

�a

2k�� if k � �
�a

2

1 � Gs,c�2,<Ter �
1

�
log�1 �

�a

2k�=� if k 	
�a

2
,

(A30)

arbitrarily interpolated on the interval �k� �
�a

2
. (Under the global

completeness assumption, the interpolated portion is a constant
equal to 1 � limt¡�Gs,c(·,t).) Then the general OU model (with �
� �z � �t � 0) can be verified to reproduce Gs,c(r,t). For any t �
Ter:

Pr[r � 1 and RT � t]

� Pr�ks,c � �
�a

2
and Ter �

1

�
log�1 �

�a

2ks,c�� t�
� Pr�ks,c � �

�a

2�1 � e���t�Ter���� Gs,c(1, t), (A31)

and

Pr[r � 2 and RT � t]

� Pr�ks,c 	
�a

2
and Ter �

1

�
log�1 �

�a

2ks,c�� t�
� Pr�ks,c � �

�a

2�1 � e���t�Ter���� Gs,c(2, t). (A32)

Remark. Note that this result holds for � � 0 (positive
feedback) as well as for � � 0 (decay), even though the OU model
is generally taken as restricted to the latter case.

Theorem 12 (Universality With Nonzero Diffusion)

Let G(r,t) be any R&T distribution that is continuous in time,
and let � be any real number. By Theorem 11, there exists a
general diffusion model (gDM) model M0 with � � 0, a � 1,

(Appendices continue)
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z � 1/2, and decay rate � such that M0 generates G(r,t). Let k be
the random growth rate assumed by M0, and let R0�t� � 1/2 �
kt be the associated stochastic response process.

We put r � 1, with r � 2 being considered analogously. By
the definition of M0, the following relation holds:

G(1, t) � Pr�responseM0
� 1 and RTM0

� t�
� Pr�min�x : R0(x) � 0� � min�t, min�x : R0(x) � a���. (A33)

Let W(t) be an OU process with zero drift, diffusion rate equal
to 1, and decay rate �. Choose a sequence of OU processes �nW(t)
with �n ¡ 0, and note that these processes all have decay rate �.
Consider

Gn(1, t) � Pr�min�x : Rn(x) � 0� � min�t, min�x : Rn(x) � a���,

(A34)

where

Rn(t) � R0(t) � �nW(t). (A35)

It can easily be shown that

Gn(1, t) ¡ (1, t) (A36)

for any t � 0 and that

Gn(1, �) ¡ G(1, �). (A37)

By an extension of Pólya’s theorem on pointwise convergence of
distribution functions (Pólya, 1920), the convergence is uniform;
that is,

sup
t�0

�Gn(1, t) � G(1, t)�¡ 0. (A38)

Combining now over both responses, the uniform convergence
implies that for any ε � 0 one can find a �n such that

sup
r,t�0

�Gn(r, t) � G(r, t)� � ε. (A39)

Now define a gDM model Mn with � � 1, a � 1/�n, z � a/2,
decay rate �, and random growth rate k/�n. The stochastic re-
sponse process in this model is equal to Rn(t)/�n � aRn(t), and thus
Mn produces the R&T distribution Gn(r,t). The model Mn therefore
satisfies the theorem.

Appendix B

Predictions and Grice Representation of Diffusion Model

The predicted response-and-time (R&T) distribution and density
of the diffusion model were calculated following the method of
Smith (2000). To simplify notation, the response process on each

trial is redefined by R̃�t� � R�t� � z, so that the starting point is

R̃�0� � 0 and the new thresholds are b1 � �z and b2 � a � z. We
also suppress superscripts s and c in this section. With this nota-
tion, the unconstrained transition function of the response process
(i.e., ignoring whether it has or has not crossed either decision
threshold) can be shown to equal

f�x,t�y, �� �
d

dx
Pr�R̃(t) � x�R̃(�) � y�

�� �

��2�1 � e�2�(t��)�

� exp����x � ye��(t��) �
k

�
(1 � e��(t��))�2

�2(1 � e�2�(t��))
� (B1)

or, when � � 0,

f�x,t�y, �� �� 1

2��2(t � �)
· exp��(x � y � k(t � �))2

2�2(t � �) �.

(B2)

The next step is to relate the predicted R&T density, g(r,t), to the
transition function using a renewal equation (Durbin, 1971; Fortet,
1943). This equation expresses the total probability of transitioning
from (0,0) to (br,t), for r � 1 or 2, in terms of the first-passage
distribution multiplied by the transition probability from the first-
passage point to (br,t):

f�br,t�0,0� � 	0

t
g�1,��f�br,t�b1,��d� � 	0

t
g�2,��f�br,t�b2,��d�.

(B3)

Because of instabilities that arise in numerically solving Equation
B3, it is transformed into the following expression (Buonocore,
Nobile, & Ricciardi, 1987):

(Appendices continue)
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g�1,t� � �2��b1,t�0,0� � 2	0

t
g(1,�) ��b1,t�b1,��d�

� 2	0

t
g(2,�) ��b1,t�b2,��d�

g�2,t� � 2��b2,t�0,0� � 2	0

t
g(1,�) ��b2,t�b1,��d�

� 2	0

t
g(2,�) ��b2,t�b2,��d� (B4)

with the new integration kernel, �, given by

��x,t�y,�� �
1

2
f�x,t�y,��

���x � k �
2e��(t��)

1 � e�2�(t��) �e�(t��)(�x � k) � �y � k��, (B5)

or, when � � 0,

��x,t�y,�� � �
f�x,t�y,���x � y�

2(t � �)
. (B6)

Following Ratcliff and Smith (2004), Equation B4 was integrated
numerically using a step size of d� � .01 (i.e., 10 ms). The
resulting R&T density was then integrated over the distributions of
z, k, and t0 to obtain the predicted R&T density of the full model.

The Grice representation for the diffusion model was obtained
using Equation 24, with the diffusion model’s joint hazard function
h(r,t) obtained from g(r,t) by numerical integation. Because of the
nested integration in Equations 24 and B4, accumulation of round-
ing errors produced artificial cusps and nonmonotonicities in Rr(t)
for extreme values of t. These minor numerical errors are negli-
gible in standard analyses of diffusion models, which focus di-
rectly on reaction time (RT) distributions and quantiles, but they
cause problems in the present analysis. Therefore, to eliminate
rounding error, the tail of g(r,t) for each response r within each
stimulus and condition (or parameter setting) was replaced by an
exact exponential function. Plots of log(g(r,t)) showed extended
regions of near-perfect linearity in the tails of the RT distribu-
tions, indicating the predicted RT distributions have asymptot-
ically exponential tails. This property can be proven analyti-
cally when k, z, and t0 are constant and there is only one
threshold (Ricciardi & Sato, 1988), and this graphical technique
showed exponentiality to be an excellent approximation for the
full model. For all of the analyses reported, the linearity of
log(g(r,t)) only broke down for extreme values of t, at the point
where rounding error from limits on machine precision came
into play. To eliminate these effects of rounding error, the linear
portion of log(g(r,t)) was extrapolated to cover the remaining
tail of the RT distribution (Figure B1).

(Appendices continue)

0 0.5 1 1.5 2 2.5 3
25

20

15

10

5

0

5

t

lo
g(

g s(r
,t)

)

Figure B1. Illustration of correction to tail of reaction time (RT) distribu-
tions derived from diffusion models. Solid curve indicates log-transformed
joint response-and-time density for correct response, g(2,t), as approximated
by numerical integration. After 1.74 s, the approximated density becomes
negative due to rounding error. Vertical black lines indicate a conservative
region within which log(g(2,t)) is very nearly linear (R2 � .99998). Dashed
line indicates extrapolation of this linear range, which was used to replace the
tail of g(2,t) with an exact exponential function, in defining the corrected
distribution. Model parameters for this example are taken from Ratcliff and
Smith’s (2004) fit of the Wiener model to Ratcliff et al.’s (2001) Experiment
2, speed condition, stimulus Level 3.
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Appendix C

Deriving Grice Representation of LBA Model

Brown and Heathcote (2008) derive the cumulative first-passage
distribution of each response process in the standard linear ballistic
accumulation (LBA) by integrating over the growth rate (kr

s) and
the starting point (zr

c):

Pr[Tr
s,c � t � t0] � 1 �

bc � tvr
s

Ac ��bc � tvr
s

t� �
�

bc � Ac � tvr
s

Ac ��bc � Ac � tvr
s

t� �
�

t�

Ac��bc � tvr
s

t� ��
t�

Ac��bc � Ac � tvr
s

t� �. (C1)

When Ac � 0, the distribution reduces to

Pr �Tr
s,c � t � t0� � 1 � ��bc � tvr

s

t� �. (C2)

In a Grice model with independent unit-exponential threshold
distributions, the first-passage distributions are given by

Pr�Tr
s,c � t� � 1 � e�Rr

s,c�t�. (C3)

This expression assumes the response processes are nondecreas-
ing, which can always be made true by substituting max� � t

{Rr
s,c(�)} for Rr

s,c(t) (Dzhafarov, 1993). Combining Equations C2
and C3 yields the response processes with which the Grice model
(with independent unit-exponentially distributed thresholds) mim-
ics the LBA. For Ac � 0,

Rr
s,c�t � t0� �

�log�
bc � tvr

s

Ac ��bc � tvr
s

t� ��
bc � Ac � tvr

s

Ac ��bc � Ac � tvr
s

t� �
�

t�

Ac��bc � tvr
s

t� ��
t�

Ac��bc � Ac � tvr
s

t� � �,

(C4)

and for Ac � 0,

Rr
s,c�t � t0� � �log���bc � tvr

s

t� �� (C5)

with Rr(t) � 0 for t � t0.

Appendix D

Grice Representation of Discrete Data

Assume we are given a finite number of response–reaction time
(RT) pairs, with all RTs distinct. Let tr1 � . . . � trnr

be the ordered
sample of RTs paired with response r. We add to this sequence a
dummy element 0 � tr0 � tr1.

Let Tr be the first-passage times for the Grice representation of
the data. It is clear that Tr is discretely distributed, with nonzero
probability at each tri (i � 0) and zero probability elsewhere
(except perhaps for t � tmax). The probability that no response has
occurred before time t is given by

Pr�RT � t� � 

r

Pr�Tr � t� (D1)

and the probability of response r occurring at time t is given by

Pr�response � r and RT � t� � Pr�Tr � t� · 

r′�r

Pr�Tr′ 	 t�

� Pr�Tr � t� · 

r′�r

Pr�Tr′ � t� (D2)

(since all response times are distinct, if Pr[Tr � t] � 0 then Pr[Tr= � t] �
0 for all r= � r). Combining Equations D1 and D2 yields a relationship
between the empirical hazard functions for the first-passage distributions
and what we refer to as the empirical joint hazard function for R&T,

ĥ�r,t�. For all t � tmax:

Pr�Tr � t�
Pr�Tr � t�

�
Pr�response � r and RT � t�

Pr�RT � t�
� ĥ�r, t�.

(D3)

Let Fr(t) be the (cumulative) distribution function for Tr, a
staircase function with jumps at tri for i � 1. With a unit-
exponential threshold distribution, the response process generating
Fr(t) is

Rr�t� � �log�1 � Fr�t��

� ��
tri�t

log
1 � Fr�tri�

1 � Fr�tr�i�1��

� ��
tri�t

log�1 �
Pr�Tr � tri�
Pr�Tr � tri��

� ��
tri�t

log�1 � ĥ��, tri��.

(D4)

This last formula is what we used in computing the Grice repre-
sentation of the empirical data, separately for each stimulus and
instruction condition.
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Correction to Jones and Dzhafarov (2013)

In the article “Unfalsifiability and Mutual Translatability of Major Modeling Schemes for Choice
Reaction Time” by Matt Jones and Ehtibar N. Dzhafarov (Psychological Review, Advance online
publication. September 30, 2013. doi:10.1037/a0034190), the link to supplemental material was
missing. All versions of this article have been corrected.

DOI: 10.1037/a0035482

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

150

http://dx.doi.org/10.1037/a0035482

	rev_121_1_1
	Unfalsifiability and Mutual Translatability of Major Modeling Schemes for Choice Reaction Time
	Universality of Models of Speeded Choice
	The Grice Framework and Independent Race Models
	Theorem 1
	Theorem 2
	Theorem 3
	Theorem 4

	Universal Variants of the Grice Framework
	Theorem 5
	Theorem 6

	Universality of the Linear Ballistic Accumulator
	Theorem 7
	Theorem 8
	Theorem 9

	Universality of Diffusion Models
	Theorem 10
	Theorem 11
	Theorem 12

	An Example
	Summary of Universality Results

	Selective Influence
	Translating the LBA and Diffusion Models Into the Grice Framework
	Grice Representation for the LBA
	Grice Representation for the Diffusion Model
	Fits to Empirical Data

	Discussion
	Conclusions

	References


	rev_121_1_150
	Correction to Jones and Dzhafarov (2013)




